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Abstract

We present a span-based version of the normalized edit
distance measure (Marzal & Vidal, 1993), which is more
appropriate for linguistic tasks and give an O(n2m3) al-
gorithm for its calculation. Span similarities used in
the algorithm are derived by taking the cosines between
the left vectors of a reduced singular value decompo-
sition of a span by context matrix. To test the model,
an exemplar-based approach is used to provide unsuper-
vised parses of sentences from the Penn Treebank using
nearest neighbour extraction based on a version of Lo-
cality Sensitive Hashing (Indyk & Motwani, 1998; Gio-
nis, Indyk, & Motwani, 1999). Initial results indicate
that the method provides parsing recall and precision
equivalent to other unsupervised methods.

Introduction
The nativist/empiricist debate on the origin on lan-
guage has been one of the longest and most hotly
contested in the history of cognitive science (Pinker,
1994; Elman, 1999). On the one hand, languages
are clearly learned at some level with a great many
variations that differ in quite subtle ways. Further-
more, the difficulty in creating an explanation of
how the genes might influence language develop-
ment suggests that it is unlikely that our biological
endowment has a direct influence (Elman, 1999).
However, the fact that humans have a much more
complex system of language than other primates,
that there are similarities across the world’s lan-
guages and that language acquisition takes similar
paths in different cultures suggest a strong innate
component (Pinker, 1994).

One key, if unstated, plank in the nativist case is
that to this point no statistical learning procedure
capable of capturing the syntax of a complex nat-
ural language has been devised (see Dennis, under
review; Klein & Manning, 2001). While connection-
ist models have demonstrated an ability to solve re-
stricted problems with toy corpora (Elman, 1991),
issues such as systematicity and constituent for-
mation and movement remain unresolved (Hadley,
1994) seriously undermining the empiricist position.

In addition, from a practical perspective the in-
ability to create syntactic analyses in an unsuper-
vised fashion makes the application of natural lan-
guage processing systems in new domains tedious.
Either one must hand specify appropriate rules or

one must create annotated corpora on which to
train systems. Both of these tasks are difficult and
time consuming.

In this paper, we outline attempts to improve
an exemplar-based model of unsupervised parsing
proposed by Dennis (under review) using span-
based normalized edit distance (SNED). We start
by defining normalized edit distance and the span-
based modification. Then we discuss how one can
calculate the span similarities necessary to apply
the method to sentences. Next we describe a ver-
sion of Locality Sensitive Hashing (Indyk & Mot-
wani, 1998; Gionis et al., 1999) adapted to work
with part of speech strings. Finally, we present re-
call and precision parsing data on sentences drawn
from the Penn Treebank (Marcus et al., 1993).

Definitions of Edit Distances

Edit Distance
Following the notation of Marzal and Vidal (1993),
let Σ be a finite alphabet and Σ∗ be the set of all
finite-length strings over Σ. Let X = X1X2...Xn be
a string of Σ∗, where Xi is the ith symbol of X. We
denote by Xi...j the substring of X that includes the
symbols from Xi to Xj , 1 ≤ i, j ≤ n. The length of
such a string is |Xi...j | = j − i + 1. If i > j,Xi...j is
the null string λ, |λ| = 0.

An elementary edit operation is a pair (a, b) 6=
(λ, λ), where a and b are strings of length 0 or
1. The edit operations are termed insertions (λ, b),
substitutions (a, b) and deletions (a, λ). An edit
transformation of X into Y is a sequence S of ele-
mentary operations that transforms X into Y . Typ-
ically, edit operations have associated costs γ(a, b).
The function γ can be extended to edit transforma-
tions S = S1S2...Sl by letting γ(S) =

∑l
i=1 γ(Si).

Given X, Y ∈ Σ∗ and S∗XY the set of all edit trans-
formations of X into Y , then the edit distance is
defined as:

δ(X, Y ) = min{γ(S)|S ∈ S∗XY } (1)

Note that the triangle inequality is a consequence
of this definition, so provided γ(a, a) = 0, γ(a, b) >
0, if a 6= b, and γ(a, b) = γ(b, a)∀a, b ∈ Σ∪ {λ}, δ is
a metric.



Dynamic programming algorithms of complexity
O(mn), where n is the length of X and m is the
length of Y , exist to calculate edit distance and to
retrieve minimal edit transformations (Wagner &
Fischer, 1974).

Normalized Edit Distance
Let L(S) be the length of a given edit transforma-
tion, then the normalized edit distance defined by
Marzal and Vidal (1993) is:

d(X,Y ) = min{γ(S)/L(S)|S ∈ S∗XY } (2)

Note that normalized edit distance is not a met-
ric. It can, however, be calculated in O(nm2) time
using an algorithm provided by Marzal and Vidal
(1993).

Marzal and Vidal (1993) also show that NED does
not produce the same answer as postnormalizing,
by finding the minimum path and dividing by its
length. Furthermore, for a handwritten character
recognition task, normalized edit distance produced
better performance than either normal edit distance
or post normalized edit distance.

Span-based Normalized Edit Distance
(SNED)
While the normalized edit distance has proven suc-
cessful in a number of tasks, when analyzing sen-
tence structure we would prefer a version of the al-
gorithm that aligns spans of symbols rather than
individual symbols. Providing a definition of span-
based edit distance involves relaxing the restriction
in the normal algorithm, so that the strings a and b
are drawn from Σ∗1. So, the edit operations be-
come (a, b) = (Xi...j , Yk...l) for 0 ≤ i ≤ j ≤ n,
0 ≤ k ≤ l ≤ m. Similarly, one can define span-
based normalized edit distance in an analogous way.
The appendix provides an algorithm capable of cal-
culating the span-based normalized edit distance
with time complexity O(n2m3) and space complex-
ity O(nm2).

Exemplar-based Parsing
The algorithm that we employ for parsing sen-
tences is a version of the Syntagmatic Paradigmatic
model (Dennis, in press, 2004, under review). In
this model, sentence parsing involves aligning near
neighbour exemplar sentences from memory with
the target sentence. For instance, suppose we wish
to parse the sentence ”His dog was big.” (see Figure
1).

We start by converting the sentence to a part
of speech (POS) sequence - ”PRP$ NN VBD JJ”,
where PRP$ = possessive pronoun, NN = noun,
VBD = past tense verb and JJ = adjective. Next
we identify near neighbour POS sequences from a

1For the current purposes, we assume that a, b 6= λ al-
though it would be useful to draw a and b from Σ∗ ∪ {λ} as
an alternative formulation.

S

NP

His/PRP$ dog/NN

VP

was/VBD big/JJ

Figure 1. The correct parse of the sentence ”His dog was
big”.

0.0000-|PRP$-NN-VBD-JJ|
|PRP$-NN-VBD-JJ|

0.0011-|PRP$|NN|--VBD-JJ-|
|PRP$|NN|MD-VB-VBN|

0.0017-|PRP$|NN|-VBD-JJ|
|PRP$|NN|VBD-VBN|

0.0018-|PRP$-NN-|VBD|JJ|
|DT-NN-NN|VBD|JJ|

Figure 2. Aligning multiple exemplars against a target sen-
tence can approximate a traditional parse. PRP$ = personal
pronoun, NN = Noun, VBD = Verb, past tense, JJ = Ad-
jective, MD = Modal verb, VB = Verb, VBN = Verb, past
participle, DT = Determiner.

large corpus and align each of these with the sen-
tence (see Figure 2). In this case, we are using
the 34,000 POS sequences that appeared at least
twice in the first 350,000 sentences from the TASA
corpus2. The number to the left of each is the
corresponding span-based edit distance. Note that
these alignments induce constituent structure. In
this case, for example, we would propose that VBD-
JJ should constitute one constituent and PRP$-NN
another.

While not constrained to be tree-like this struc-
ture may tend to correspond to a tree for many
structurally unambiguous cases. To induce a tree
the number of times each span of POS tags was
identified by the model as a constituent was de-
termined. The binary parse with the highest total
constituent count is then chosen using the obvious
dynamic programming algorithm (c.f. Klein &
Manning, 2001). In the example, the nonsingleton
spans have the following counts:

PRP$ NN VBD JJ 1
PRP$ NN VBD 0
NN VBD JJ 0
PRP$ NN 1
PRP$ VBD 0
VBD JJ 2

2We thank the late Stephen Ivens and Touchstone Ap-
plied Science Associates (TASA) of Brewster, New York for
providing this valuvlable resource.



PRP$ NN VBD JJ 1
NN VBD JJ 0
VBD JJ 2
Total 3 PRP$

NN

VBD JJ

PRP$ NN VBD JJ 1
PRP$ NN 1
VBD JJ 2
Total 4

PRP$ NN VBD JJ

PRP$ NN VBD JJ 1
PRP$ NN VBD 0
PRP$ NN 1
Total 2

PRP$ NN

VBD

JJ

Figure 3. Possible binary parses of ”His dog was big.” and
their associated counts. In this case, parse number two would
be chosen.

Figure 3 shows the three possible binary parses
of the example sentence and the counts of the asso-
ciated spans. In this case, the second parse would
be chosen as it has the highest total span count.

Calculating POS Span Costs

In order to apply the SNED algorithm one requires
a γ function that indicates the cost of substitut-
ing one string of POS tags to another. To calculate
substitution costs we combined ideas from the Con-
text Constituent Model (CCM, Klein & Manning,
2001) and Latent Semantic Analysis (LSA, Lan-
dauer & Dumais, 1997). A span by context matrix
was formed by taking all POS spans up to four tags
in length and recording the number of times they
appeared in each context consisting of the tags be-
fore and after the span. For instance, the example
sentence, PRP$ NN VBD JJ, would generate the
spans and contexts show in Figure 4.

Applying this procedure to the first 350,000 sen-
tences of the TASA corpus generated 80,000 unique
spans and 1300 unique contexts. Note that spans
that tend to substitutable for each other will have
similar sets of contexts. For instance, we might ex-
pect the pattern of contexts in which we find VBD
JJ to be similar to the pattern in which we find MD
VBD VBN as they are both verb phrases. Also,
we column normalized as some contexts are much
more frequent than others and the frequent ones
(e.g. SS:EE) tend to be less informative.

The singular value decomposition (SVD) was
then applied to factor the span by context matrix

Spans Contexts
PRP$ NN VBD JJ SS:EE
PRP$ NN VBD SS:JJ
NN VBD JJ PRP$:EE
PRP$ NN SS:VBD
NN VBD PRP$:JJ
VBD JJ NN:EE
PRP$ SS:NN
NN PRP$:VBD
VBD NN:JJ
JJ VBD:EE

Figure 4. Spans and associated contexts for the string PRP$
NN VBD JJ. Note SS and EE are tags indicating the start
and end of the sentence, respectively.

M into three matrices:

M = UDV T (3)

where U is an orthonormal matrix where each
row represents a span, D is a diagonal matrix of
singular values and V is an orthonormal matrix
where each row represents a context. To improve
the signal to noise ratio all but the first 20 singular
values were set to zero creating a reduced version
of D which we will term D̂. The distance between
any two spans can then be calculated as follows:

γ(Xi...j , Yk...l) = 1− cos(UxD̂, UyD̂) (4)

where Ux and Uy are the rows of U correspond-
ing to span Xi...j and Yk...l, respectively. Figure 5
shows a multiple dimensional scaling solution for
the vectors corresponding to the 60 most frequent
spans. Note that there is clear similarity structure
with spans representing sentences, verb phrases, N

and N structures well separated.

Finding Nearest Neighbors
A final issue to be resolved is how the algorithm
selects nearest neighbour sequences to align. Given
that there may be large numbers of potential sen-
tences the performance of the nearest neighbour
search will have a significant impact on the per-
formance of the algorithm as a whole. In our case,
it is sufficient to have a set of approximate nearest
neighbours, so we use a version of Locality Sensitive
Hashing (LSH, Indyk & Motwani, 1998; Gionis et
al., 1999) adapted to work in Σ∗ rather than in Rd

as is typical.
The basic idea of LSH is to create multiple hash

functions each of which is designed so that similar
sequences are likely to collide. Finding the near-
est neighbours of a target string involves applying
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Figure 5. Multidimensional scaling solution for the vectors
corresponding to the 60 most frequent span as derived from
the SVD.

the hash functions to the new case and accumu-
lating the strings that appear in the corresponding
buckets. The SNED to each of these strings is then
calculated to determine which are near neighbours.

To create the hash functions in Σ∗ we create a
set of rewrite rules that map one POS sequence to
a simpler one. Different hash functions are created
by permuting the rewrite rules. For example,
suppose we have the sentence ”Her little dolly
felt sad.”, which translates to PRP$ JJ NN VBD
JJ, in our corpus and we wish to find the nearest
neighbours of ”His dog was big.” (PRP$ NN VBD
JJ). Further, suppose that we have the following
rewrite rules JJ NN → NN, PRP$ NN → NN, DT
NN → NN. Let:

h1 = [JJ NN → NN, PRP$ NN → NN, DT NN → NN]
h2 = [PRP$ NN → NN, DT NN → NN, JJ NN → NN]

Now for the two strings we get the following keys:

Target

h1(PRP$ NN VBD JJ) = NN VBD JJ
h2(PRP$ NN VBD JJ) = NN VBD JJ

Exemplar
h1(PRP$ JJ NN VBD JJ) = NN VBD JJ
h2(PRP$ JJ NN VBD JJ) = PRP$ NN VBD NN

Because the two strings have a hash key in com-
mon string two will be found when the system is
queried with string one. In practice, locality sen-
sitive hashing is fast and is not greatly affected by
the size of the corpus. In our trials, we constructed
a five hash system with hash functions containing
200 rewrite rules. On an AMD Opteron 800MHz
system, 34,000 queries can be completed in 100
ms.

Evaluating the model

The procedure outlined above was applied to all of
the sentences from the Wall Street Journal section
of the Penn treebank (Marcus et al., 1993) that
were of length 10 or less. To assess performance
the parses produced by the model were compared
against the gold standard parses provided by the
treebank. Three measures were calculated:

• Unlabelled Recall: The mean proportion of
constituents in the gold standard that the model
proposed.
• Unlabelled Precision: The mean proportion of

constituents in the models answer that appear in
the gold standard.
• F1: The harmonic mean of unlabelled recall

and unlabelled precision.
Because the treebank provides parses that are not

binary (in Chomsky normal form) but the proce-
dure used makes this assumption it is not possible
to achieve perfect performance. Klein and Manning
(2001) calculated that the best possible F1 measure
that can be achieved is 87%.

Figure 6 shows the performance of the model
against chance selection of trees and against three
versions of the Constituent Context Model (CCM)
proposed by Klein and Manning (2001). Clearly, all
of these models are performing well above chance
although all are still well below the theoretically
achievable maximum of 87%.

A key issue in the performance of the model is
the number of nearest neighbours that are returned
by the locality sensitive hashing algorithm. Figure
7 shows the impact of restricting the analysis to the
items that return nearest neighbour sets of different
sizes. The performance of the model when applied
to POS strings for which at leat 30 nearest neigh-
bours were retieved is approximately the same level
as the CCM model with an F1 measure around 64%,
but lags the CCM with tags model.
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Figure 6. Results of Unsupervised Parsing Experiment.

Conclusions

A ket point in favour of the nativist account of
language acquisition is the fact that no statistical
mechanism capable of accounting for the human
syntactic capability has yet been devised. While
the model presented in this paper does not perform
at a sufficient level to indicate that the problem has
been solved, the results demonstrate that significant
structure can be extracted from a natural corpus in
an unsupervised fashion suggesting that the task
may be able to be accomplished. Furthermore, the
current results are preliminary. There are still a
number of areas in which the model could be im-
proved. These include the mechanism for calculat-
ing POS span similaities and the locality sensitive
hashing method for identifying nearest neighbours.
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Appendix: Python code that implements
Span-based Normalized Edit Distance.

def SnedMatrix(s1, s2):
slen = min(len(s1),len(s2))
M = ones((len(s1)+1, len(s2)+1, slen+1),

Float) * float(sys.maxint)
M[0,0,0] = 0.0
# do top left corner
for k in xrange(1, len(s1)):
for l in xrange(1, len(s2)):
M[k,l,1] = d(s1[0:k], s2[0:l])

M[len(s1), len(s2), 1] = d(s1, s2)

# do rest
for steps in xrange(1,slen):
for fS1 in xrange(steps, len(s1)):
for fS2 in xrange(steps,len(s2)):
for tS1 in xrange(fS1+1, len(s1)):
for tS2 in xrange(fS2+1, len(s2)):
val = d(s1[fS1:tS1], s2[fS2:tS2]) + \

M[fS1, fS2, steps]
if val < M[tS1, tS2, steps+1]:
M[tS1,tS2,steps+1] = val

val = d(s1[fS1:], s2[fS2:]) + \
M[fS1, fS2,steps]

if val < M[len(s1), len(s2), steps+1]:
M[len(s1),len(s2), steps+1] = val

return M

def Sned(s1,s2,M=None):
if M == None:

M = NedMatrix(s1,s2)
minValue = 100
for step in xrange(1,min(len(s1),len(s2))+1):

value = M[len(s1),len(s2),step]/step
if minValue > value:
minValue = value

return(minValue)


