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Abstract

Batchelder and Smith (2004) critiqued the use of
Bayesian statistical inference for model selection and
evaluation, arguing that it can lead to invalid and
contradictory conclusions. Their argument centered
around a series of concrete examples purporting to
show the problems inherent in adopting the Bayesian
approach. This paper addresses Batchelder and
Smith’s critique by re-analyzing their examples us-
ing correct Bayesian methods, and demonstrates
that their negative conclusions are not warranted.
Throughout the re-analysis, the central role of infor-
mation in the Bayesian approach is emphasized. In
particular, it is argued a careful consideration of avail-
able information is required to understand the rela-
tionship between parameters, models, and data, and
the setting of prior probability distributions.

Introduction
As an empirical science, cognitive psychology advances
primarily through the development of models. Cog-
nitive models provide formal expressions of theories
that can be tested and refined against data. Like all
scientific models, cognitive models strive to meet the
complementary demands of explanation and predic-
tion. They attempt to provide some useful explanation
of observed cognitive phenomena, and a capability to
generalize to future or different circumstances.

The fundamental role of models in cognitive psy-
chology means that the quality of methods for their
evaluation and comparison are a key determinant of
scientific progress. It is not suprising, therefore, that
considerable effort has been devoted to promoting the
use of modern model selection methods—particularly
Bayesian and Minimum Description Length (MDL)
methods—in cognitive psychology (e.g., Myung et al.,
2000a,b; Pitt et al., 2002). There are now worked ex-
amples in the literature applying Bayesian and MDL
methods for evaluating models of stimulus represen-
tation (e.g., Lee, 2001a,b; Navarro and Lee, in press),
generalization and concept learning (e.g., Tenenbaum
and Griffiths, 2001), judgment (e.g., Griffiths and
Tenenbaum, 2004), inference (e.g., Griffiths et al.,
2004), decision-making (e.g., Lee and Cummins, 2004),
and problem solving (e.g., Lee et al., 2004).

Recently, however, Batchelder and Smith (2004)1
critiqued the application of Bayesian methods, argu-
ing that they can lead to invalid and contradictory
conclusions. Their argument is centered around a spe-
cific example purporting to show the problems inherent
in adopting the Bayesian approach to model selection.
This paper re-analyzes Batchelder and Smith’s exam-
ple using correct Bayesian methods, and demonstrates
that their negative conclusions are not warranted.

Throughout our re-analysis, we emphasize the cen-
tral role of information in the Bayesian approach. In
particular, we show how a careful consideration of
available information is required to understand the re-
lationship between parameters, models, and data, and
the setting of prior probability distributions.

Batchelder and Smith’s (2004) Example
In this section, we summarize the examples presented
by Batchelder and Smith (2004).

The First Two Models
Batchelder and Smith (2004) originally consider two
models that predict the probability of four mutually
exclusive and exhaustive outcomes, labeled p1, . . . , p4.
Both models use two parameters, denoted here θ1 and
θ2 to predict the various probabilities, but combine the
parameters in different ways. For the first model, Ma,
the predictions are:

Ma
.=





p1 (α1, α2) = α2
1 + 2α1 (1 − α1) (1 − α2)

p2 (α1, α2) = (1− α1)
2
α2 (2 − α2)

p3 (α1, α2) = 2α1α2 (1 − α1)
p4 (α1, α2) = (1− α1)

2 (1 − α2)
2
,

while for the second model, Mb, the predictions are:

Mb
.=





p1 (β1, β2) = β1β2 (β1β2 + 2 (1 − β1))
p2 (β1, β2) = β1 (1 − β2) (1 − 2β1 (1 + β2))
p3 (β1, β2) = 2β2

1β2 (1 − β2)
p4 (β1, β2) = (1 − β1)

2
.

1Graciously, we have resisted the temptation to say
“henceforth ‘BS’” at this point.



These models can be evaluated against data, D, that
detail how n observations distribute across the four
outcomes. The number of times the ith outcome is
observed is counted by ki, with

∑4
i=1 ki = n, and so

D = (k1, . . . , k4). Accordingly, the likelihood function
relating the model and its parameters to the observed
data are the multinomials

p (D | α1, α2, Ma) =
(

n

k1 . . .k4

) 4∏

i=1

[pi (α1, α2)]
ki .

(1)
and

p (D | β1, β2, Mb) =
(

n

k1 . . . k4

) 4∏

i=1

[pi (β1, β2)]
ki .

(2)
Batchelder and Smith (2004) consider the specific data
set for n = 16 observations with D = (8, 3, 4, 1). By
assuming uniform priors in both models,

πa (α1, α2) ∝ 1,

and
πb (β1, β2) ∝ 1,

they calculate the Bayes Factor to be

p (D | Ma)
p (D | Mb)

=

∫ 1

0

∫ 1

0
p (D | α1, α2, Ma) πa (α1, α2) dα1dα2∫ 1

0

∫ 1

0 p (D | β1, β2, Mb) πb (β1, β2) dβ1dβ2

= 1.4.

This means that the data provide evidence in favor Ma

over Mb, given the assumptions made in the analysis.

The ‘True’ Model
At this point, Batchelder and Smith (2004) reveal that
both Ma and Mb are both one-to-one and onto repa-
rameterizations of a ‘true’ model, Mt, which makes the
predictions

Mt
.=





p1 (θ1, θ2) = θ2
1 + 2θ1(1 − θ1 − θ2)

p2 (θ1, θ2) = θ2
2 + 2θ1(1 − θ1 − θ2)

p3 (θ1, θ2) = 2θ1θ2

p4 (θ1, θ2) = (1 − θ1 − θ2)
2

.

In addition, Batchelder and Smith (2004) give a sub-
stantive interpretation of Mt as the blood group model
(e.g., Uhlenbruck and Prokop, 1969). This model is de-
picted in Figure 1, showing how the four blood groups
are determined by a hierarchical probabilistic process.
As indicated on Figure 1, this process is naturally pa-
rameterized in terms of two rates, θ1 and θ2.

Batchelder and Smith (2004) conclude that there is a
problem with the Bayesian analysis, because the Bayes
Factor favors Ma over Mb, even though both are sim-
ple reparameterizations of the same underlying model.
Their intuition is that neither model should be favored.
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Figure 1: The interpretable parameterization of the
blood group model.

Understanding Bayesian Inference

The job of statistical inference is to deal with infor-
mation under conditions of uncertainty. Within the
Bayesian approach, probability distributions are used
to represent explicitly, at all stages of analysis, what is
known and unknown about every variable of interest.
Bayesian inference then proceeds by the routine appli-
cation of principled methods for updating probability
distributions, based on three different, but potentially
equally important, sources of information (see Lee and
Wagenmakers, in press, for an overview).

Information Inherent in the Problem

Just as zero is the natural starting point for count-
ing, the natural initial representation for Bayesian in-
ference is one corresponding to complete ignorance.
Jaynes (see 2003, ch. 12) describes principled meth-
ods for defining prior distributions corresponding to
complete ignorance. These methods rely on establish-
ing transformational invariances inherent in problems
that constrain the choice of prior distribution.

Intuitively, the idea is to consider ways in which a
problem could be restated, so that it remains funda-
mentally the same problem, but is expressed in a differ-
ent formal way. Prior distributions must necessarily be
invariant under these transformations, since otherwise
different ways of stating the same problem would lead
to different inferences being drawn. In general, the re-
quirement of invariance from information inherent in
a problem provides strong constraints on the choice of
prior distribution, and often determines them uniquely.

Relevant Prior Information

If other relevant prior information is available,
Bayesian analysis incorporates it into the prior distri-
butions. This is done using maximum entropy meth-
ods. Intuitively, the idea is to update the prior dis-
tributions so that they capture the known constraints
provided by additional information, but otherwise re-
main as uncertain as possible.



Information Provided by Data
As relevant data from experimental or other observa-
tions become available, Bayesian analysis uses them to
update the probability distribution according to Bayes
Theorem.

The Correct Bayesian Analysis
In this section, we apply the Bayesian method of
analysis just outlined to the problems presented by
Batchelder and Smith (2004).

The First Two Models
As the first two models are presented, no information
is available other than the way a set of meaningless pa-
rameters lead to predictions about a set of four proba-
bilities. The only way to use this information to deter-
mine priors for the parameters is to ensure reparame-
terization invariance. As Batchelder and Smith (2004)
correctly observe later in their paper, this can only be
achieved using Jeffreys priors.

In general, the Jeffreys’ prior for model with a (pos-
sibly) multidimensional parameterization γ is given by

π (γ) ∝
√

det J (γ)

where

Jij (γ) = Eγ

[
−∂2 lnp (D | γ)

∂γi∂γj

]
.

For several common classes of likelihood functions,
including multinomials and Gaussians, Su et al. (in
press) provide a simple alternative method for calcu-
lating Jeffreys priors. For the multinomial likelihood
in Eq. 2, their result (see also Schervish, 1995, p. 115)
is that J = PTΛ−1P where

P =
[

∂p1/∂γ1 ∂p2/∂γ1 ∂p3/∂γ1 ∂p4/∂γ1

∂p1/∂γ2 ∂p2/∂γ2 ∂p3/∂γ2 ∂p4/∂γ2

]

and

Λ =




p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4


 .

Using this result, it is a straightforward (but not very
enlightening) algebraic exercise to calculate Jeffreys
priors for Ma and Mb, which we denote πJ

a (α1, α2)
and πJ

b (β1, β2) respectively.
Under Jeffreys priors, the Bayes Factor is now

p (D | Ma)
p (D | Mb)

=

∫ 1

0

∫ 1

0 p (D | α1, α2, Ma) πJ
a (α1, α2) dα1dα2∫ 1

0

∫ 1

0
p (D | β1, β2, Mb) πJ

b (β1, β2) dβ1dβ2

= 1.

This means that neither model is favored by the data,
as we require.

This result is represented graphically in Figure 2,
which shows the prior-weighted likelihood function
across the parameter space for both models, using the
Jeffreys priors. The integrations in the numerator and
denominator of the Bayes Factor correspond to the vol-
umes enclosed by these surfaces. Because these vol-
umes area equal, the ratio is one, and both models are
equally likely based on the evidence provided by the
data.

Thinking in terms of the information available, the
problem with the original analysis of Batchelder and
Smith (2004) is that the assumption of uniform pri-
ors corresponds to fabricating information that is not,
in fact available. Uniform priors do express complete
ignorance in some situations—an example of which is
described in more detail later—but the models Ma and
Mb do not correspond to such a situation. Given that
the Bayesian analysis has been misled by the informa-
tion it was provided, it is not surprising that it reaches
an unsatisfactory conclusion. In other words, the mis-
match between the (correct) intuition of Batchelder
and Smith (2004) and the incorrect Bayes Factor they
obtained arises because of a mismatch between the in-
formation on which their intuition was based, and the
information they formalized in defining prior distribu-
tions over their parameters.

The ‘True’ Model
A more subtle issue arising from the Batchelder and
Smith (2004) problem is how the ‘true’ model, Mt,
should be treated. It would be straightforward to find
Jeffreys priors for this model, and conduct exactly the
same analysis as for the uninterpreted ‘black box’ mod-
els Ma and Mb. But Mt is not a black box model,
because Batchelder and Smith (2004) provided addi-
tional information in revealing that Mt corresponds to
an interpretable parameterization of the blood group
model. In particular, the parameters θ1 and θ2 are
now known to correspond to rates, with their parame-
ter space being (θ1, θ2) ∈ [0, 1]× [0, 1].

For a rate parameter, complete ignorance is ex-
pressed by the prior distribution known as Haldane’s
prior, which is shown in Figure 3. A rigorous deriva-
tion of this prior using transformational invariance is
given by Jaynes (2003, pp. 382–385); a more intu-
itive justification is provided by Zhu and Lu (2004)).
Applying this result to the model Mt gives the prior
πt (θ1, θ2) = 1/ (θ1 (1 − θ1) θ2 (1 − θ2))

While we do not know Batchelder and Smith’s pri-
vate thoughts, we guess they would find this prior
counter-intuitive. We guess this because Batchelder
and Smith (2004) say they find Jeffreys prior for a
rate parameter, also shown in Figure 3, to be counter-
intuitive, and it has a similar qualitative form to the
Haldane prior. Of course, as Jaynes (2003) argues, en-



00.20.40.60.81

0

0.2

0.4

0.6

0.8

1

α
1

α
2

00.20.40.60.81

0

0.2

0.4

0.6

0.8

1

β
1

β
2

Figure 2: The prior-weighted likelihood across the parameter space for the two models, Ma (left panel) and Mb

(right panel), given the data considered by Batchelder and Smith (2004), and using Jeffreys priors. The volume
encompassed by both surfaces is equal.

countering a counter-intuitive result in this way ought
to be treated as an opportunity to educate and cor-
rect our intuition, rather than abandoning a coherent
framework for statistical inference.

In this case, the form of the Haldane prior for rates
arises because many phenomena always happen (i.e.,
have a rate of one) or never happen (i.e., have a rate
of zero), and relatively few have an actual ‘rate’ be-
tween these extremes. As a concrete example, consider
undertaking an experiment to determine the ‘rate’ at
which two chemicals, when mixed, turn green. The
first observation will be very informative in this situa-
tion: if the mixed chemicals turn green, a rate of one
seems likely; if they do not turn green, a rate of zero
seems likely. Many phenomena share this characteris-
tic of having ‘rates’ that are actually either zero or one.
Unless we know both outcomes are possible, a true rate
between these extremes is less likely. Accordingly, un-
der the assumption of complete ignorance, where the
“always” and “never” possibilities are not known to be
false, the Haldane prior makes rates of one and zero
more probable, while still allowing for the possibility
of a rate somewhere between.

Besides requiring the Haldane prior, the other im-
portant contribution of the additional information pro-
vided in the ‘true’ model is that the parameters now
have meaning, and their posterior distribution are use-
ful and interpretable. Applying the laws of probability,
the required posterior is just

p (θ1, θ2 | D) ∝ p (D | θ1, θ2) πt (θ1, θ2) ,

where the proportionality is handled by normalizing
the posterior to sum to one, as required for it to be

a probability distribution. Figure 4 summarizes the
posterior for the data considered by Batchelder and
Smith (2004), showing the maximum posterior den-
sity, together with 50%, 90%, 95% and 99% credible
regions.

Of course, it may be the case—Batchelder and Smith
(2004) never say one way or the other—that it is known
the rate parameters in the blood group correspond to
processes where both binomial possibilities can occur.
If this additional information is available, maximum
entropy methods lead to the Haldane prior being up-
dated to a uniform prior (Jaynes, 2003, pp. 385), also
shown in Figure 3. As should be the case, the avail-
ability of different information will generally lead to
different results. For this example, however, the pos-
terior distribution under the uniform prior is visually
indistinguishable from Figure 4. This is because the 16
available data provide information that dominate the
subtle difference between initially available informa-
tion that lead to the Haldane and uniform prior. The
fact that Bayesian measures are generally relatively in-
sensitive to priors when sufficient data are available is
fundamentally a statement about the relative contri-
bution of different sources of information to reducing
uncertainty; it is a pity that it is often presented (by
both Bayesian and non-Bayesian) as merely a practical
apologetic for putative deficiencies in the framework of
Bayesian inference.

Finally, we note that Batchelder and Smith (2004),
like some Bayesian authors (e.g., Gill, 2002, pp. 135-
137), express the concern that maximum entropy
methods are not reparameterization invariant. This
is true, but not relevant. Following the stages of infor-
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Figure 3: Haldane, Jeffreys and uniform priors for a
rate parameter θ.

mation analysis done in Bayesian inference, the appli-
cation of maximum entropy methods (for incorporat-
ing prior information about parameters) is done after
analysis of the information in the problem itself (which
determines complete ignorance priors with respect to
a parameterization). The role of maximum entropy
is therefore to refine an existing probability distribu-
tion over an existing parameterization, and there is no
need for reparameterization invariance. Our analysis
of the Batchelder and Smith (2004) example provides
a concrete demonstration of this. The complete igno-
rance Haldane prior determined by transformational
invariance corresponds to a specific parameterization.
When it becomes known that both outcomes are possi-
ble, maximum entropy methods only have to deal with
the existing parameterization, and update the Haldane
to a uniform prior.

Discussion

Considering the Batchelder and Smith (2004) exam-
ple highlights the importance of understanding what
information is available about parameters and models
when making Bayesian inferences. At their most basic
level, models are just a set of probability distributions
across a data space indexed by one or more parame-
ters. Sometimes in cognitive modeling, parameters do
nothing other than fulfill this indexing role, and exist
only to allow the full range of model predictions to be
observed. If this is all that is known, priors need to be
reparameterization invariant, and this is achieved by
using Jeffreys priors.

Usually, however, cognitive models carry informa-
tion about the parameters. Often, the level of the-
oretical committment to parameters, and the mean-
ing attached to them, is as important as the model
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Figure 4: Posterior over the parameter space for
the ‘true’ model Mt, given the data considered by
Batchelder and Smith (2004), using Haldane’s prior.
The maximum is shown by the cross, together with
50%, 90%, 95% and 99% credible regions.

itself. For example, something like the ALCOVE (Kr-
uschke, 1992) model of category learning makes the-
oretical claims about cognitive processes (i.e., selec-
tive attention, error-driven learning, and generaliza-
tion are important for categorization), but also seeks to
interpret its parameters as corresponding to meaning-
ful psychological variables (i.e., learning rates, levels
of generalization, and response strategies). The only
reason, for example, it is sensible to study individual
differences through fitting models like ALCOVE is that
variations in parameters are psychologically meaning-
ful (e.g., Nosofsky et al., 1994; Nosofsky and Johansen,
2000; Treat et al., 2001; Webb and Lee, 2004).

In even more extreme cases, some cognitive mod-
els view the parameters as being more meaningful and
important than the model itself. For example, many
models in psychometrics take very simple forms (e.g.,
linear models in factor analysis) that are not part of a
strong theoretical committment, but serve primarily as
vehicles for inferring their parameters from data. It is
these parameters that correspond to the psychological
variables of interest, such as levels of cognitive abilities,
and are the important outcome of the modeling.

In cases like these, where information is available
about model parameters, using Jeffreys priors is sub-
optimal because it does not use all of the available
information. Rather, the more general notion of trans-
formational invariance approach advocated by Jaynes
(2003, ch. 12) should be applied, because it incorpo-
rates what is known about the parameters. At least
the first part of this conclusion should be obvious. One
of the defining philosophical features of the Bayesian



approach is that, unlike Orthodox methods based on
sampling distributions, it is possible to know some-
thing about parameters before any data have been
observed, or, indeed, before any model has been pro-
posed. Jeffreys priors are defined with respect to a
model, and so cannot possibly always be the appropri-
ate method for determining priors.

When the available information is analysed care-
fully, however, Bayesian inference provides a complete
and general method for making quantitative judgments
about models, parameters, and data. In this sense,
it provides the ideal framework for dealing with the
uncertainty that surrounds the enterprise of cognitive
modeling.
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