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Abstract

Modeling the semantic similarity between text docu-
ments presents a significant theoretical challenge for
cognitive science, with ready-made applications in
information handling and decision support systems
dealiong with text. While a number of candidate
models exist, they have generally not been assessed
in terms of their ability to emulate human judgments
of similarity. To address this problem, we conducted
an experiment that collected repeated similarity mea-
sures for each pair of documents in a small corpus of
short news documents. An analysis of human per-
formance showed inter-rater correlations of about 0.6.
We then considered the ability of existing models—
using word-based, n-gram and Latent Semantic Anal-
ysis (LSA) approaches—to model these human judg-
ments. The best performed LSA model produced cor-
relations of about 0.6, consistent with human perfor-
mance, while the best performed word-based and n-
gram models achieved correlations closer to 0.5. Many
of the remaining models showed almost no correla-
tion with human performance. Based on our results,
we provide some discussion of the key strengths and
weaknesses of the models we examined.

Introduction
Modeling the semantic similarity between text docu-
ments is an interesting problem for cognitive science,
for both theoretical and practical reasons. Theoret-
ically, it involves the study of a basic cognitive pro-
cess with richly structured natural stimuli. Practically,
search engines, text corpus visualizations, and a vari-
ety of other applications for filtering, sorting, retriev-
ing, and generally handling text rely fundamentally on
similarity measures. For this reason, the ability to as-
sess semantic similarity in an accurate, automated, and
scalable way is a key determinant of the effectiveness of
most information handling and decision support soft-
ware that deals with text.

A variety of different approaches have been devel-
oped for modeling text document similarity. These in-
clude simple word-based, keyword-based and n-gram
measures (e.g., Salton, 1989; Damashek, 1995), and
more complicated approaches such as Latent Seman-
tic Analysis (LSA: Deerwester et al., 1990; Landauer
and Dumais, 1997). While all of these approaches have

achieved some level of practical success, they have gen-
erally not been assessed in terms of their ability to
model human judgments of text document similarity.
The most likely reason for this failure is that no suit-
able empirical data exist, and considerable effort is in-
volved in collecting pairwise ratings of text document
similarity for even a moderate number of documents.
This paper reports the collection of data that give ten
independent ratings of the similarity of every pair of 50
short text documents, and so represents an attempt to
establish a ‘psychological ground truth’ for evaluating
models. Using the new data, we report a first eval-
uation of the ability of word-based, n-gram and LSA
approaches to model human judgments.

Experiment

Materials

The text corpus evaluated by human judges contained
50 documents selected from the Australian Broadcast-
ing Corporation’s news mail service, which provides
text e-mails of headline stories. The documents varied
in length from 51 to 126 words, and covered a number
of broad topics. A further 314 documents from the
same were collected to act as a larger ‘backgrounding’
corpus for LSA.

Both document sets were assessed against a stan-
dard corpus of five English texts using four models of
language. These were the log-normal, generalized in-
verse Gauss-Poisson (with γ = −0.5), Yule-Simon and
Zipfian models (Baayen, 2001). Both document sets
were within the normal range of English text for word
frequency spectrum and vocabulary growth and were
therefore regarded as representative of normal English
texts.

Subjects

The subjects were 83 University of Adelaide students
(29 males and 54 females), with a mean age of 19.7
years. They were each paid with a ten (Australian)
dollar gift voucher for every 100 document pair ratings
made.



Procedure
Subjects were asked to read and judge the similarity
of documents presented in pairs displayed side by side.
The full text of each document was always displayed.
For each pair, a subject indicated how similar they
felt the documents were on a five-point scale (with
one indicating “highly unrelated” and five indicating
“highly related”). Once a judgement had been made,
another pair of documents was presented and the pro-
cess repeated. Each possible pair of documents (ex-
cluding self-comparisons) was presented between eight
and twelve times1. The pairings were presented in a
random order, and which documents were shown on
the left and right was also randomly determined.

Basic Results
The distribution of ratings over all trials revealed a
heavy skew towards low similarity values, with fre-
quencies of about 0.64, 0.18, 0.10, 0.06 and 0.02 for
the similarity responses ‘one’, ‘two’, ‘three’, ‘four’ and
‘five’ respectively.

To test for individual differences in similarity rat-
ings, the difference between every rating made by a
subject and the overall mean for that document pair
was calculated. The distribution of these difference
scores is shown in Figure 1. The mean absolute dif-
ference is about 0.46 on the five-point scale and about
90% of the differences are less than one. We also pro-
duced a measure of ‘inter-rater’ correlation, by choos-
ing one rating for each document pair at random, and
measuring its correlation with the average of the re-
maining human judgments. The average of 1,000 such
correlations was 0.605.

To test whether the left-right positioning of docu-
ments affected similarity judgment, the difference be-
tween the average similarity for both positionings was
calculated. The average difference was 0.37 on the five-
point scale, and more than 95% of all the pairs were
within one point on that scale.

These results suggest that similarity judgments do
not vary significantly across subjects or because of left-
right positioning, and so similarity values for all pre-
sentations of each document pair were averaged. The
resultant five-point similarity scores were then normal-
ized to lie on a 0-1 scale for ease of comparison with
the various models of similarity.

Evaluation of Automated Measures

Document Representation
After removing all punctuation and capitalization from
the text, words were defined as unique strings sep-
arated by spaces. The corpus representations using

1The intention was to present each pair exactly ten
times, but an error in running the program resulted in
about 10% of the pairings being presented eight, nine,
eleven or twelve times
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Figure 1: Distribution of differences between individ-
ual subjects ratings, and the overall mean for each doc-
ument pair.

the complete set of words, and using that subset of
the words not included in a standard set of common
words (a stoplist) were both generated. In addition,
n-gram representations (Damashek, 1995), based on
sequences of n successive characters occuring in the
text, were generated for n = 3, 4, . . ., 10. Formally,
each approach represents the corpus as a u× v matrix
of counts X = [xik] where xik counts the number of
times the i-th word or n-gram occurs in the k-th doc-
ument. The value u is the number of words, number
of words not in the stop list, or number of n-grams in
the corpus, and v is the number of documents.

Binary Similarity Models
Measures In cognitive science, considerable atten-
tion has been given to the problem of modeling hu-
man similarity judgments for featural stimuli, where
only the presence or absence of features is used to rep-
resent objects (e.g., Navarro and Lee, ress; Tversky,
1977; Tenenbaum and Griffiths, 2001). In the current
context, this corresponds to a representation that does
not count the number of times words occur in docu-
ments, but simply denotes whether they occur at all.
Defining tik = 1 if xik > 0 and tik = 0 if xik = 0
allows different similarity models for binary represen-
tations to be defined in terms of four counts. For the
i-th and j-th documents, the count aij =

∑
k tiktjk

is the number of words or n-grams in the corpus rep-
resentation that are common to both documents, the
counts bij =

∑
k tik (1 − tjk) and cij =

∑
k (1 − tik) tjk

are the distinctive words or n-grams that one doc-
ument has but the other does not, and the count
dij =

∑
k (1 − tik) (1 − tjk) is the number contained

within neither document.



Previous similarity modeling suggests three theoret-
ically important alternatives based on these counts.
The most widely used (e.g., Lee and Navarro, 2002;
Shepard and Arabie, 1979) is the Common Features
Model, which is a special case of Tversky’s (1977)
Contrast Model, and assumes simply that similarity
is measured by the proportion of common features, so
that:

scom
ij =

aij

aij + bij + cij + dij
.

An alternative is Tversky’s (1977) Ratio Model:

srat
ij =

aij

aij + bij + cij
,

which measures similarity as the ratio of common to
common and distinctive features. Finally, the Distinc-
tive Features special case of the Contrast Model, which
is equivalent to the similarity model used in discrete
multidimensional scaling (e.g., Rohde, 2002), assumes
that two stimuli become more dissimilar to the extent
that one stimulus has a feature that the other does
not, so that:

sdis
ij =

aij + dij

aij + bij + cij + dij
.

Beyond these psychologically motivated measures,
Cox and Cox (1994, p. 11) list another nine similarity
measures based on the a, b, c, and d counts. We also
evaluated these measures, but found that none outper-
formed the best of the three psychologically motivated
measures.

Results Figure 2 shows the correlations between the
human similarity measures, and those predicted by the
Ratio, Common Features and Distinctive Features sim-
ilarity models. These correlations are shown for com-
plete binary and stopped binary word-based represen-
tations, and binary 3-gram through to 10-gram repre-
sentations.

Figure 2 shows at least four clear results. First,
the Ratio Model outperforms the Common Features
Model for most representations, and both are signif-
icantly better than the Distinctive Features Model.
Secondly, for the Ratio and Common Features Models,
the stopped representation leads to better performance
than using the complete word representation. Thirdly,
the Ratio and Common Features Models achieve their
best correlation using 7-, 8-, or 9-grams, with worse
performance for smaller and larger lengths. In the best
case, the models have a correlation of about 0.5 with
human judgments.

Count Similarity Models
Measures For the corpus representations using
counts, we tested the four symmetric similarity models
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Figure 2: Correlations between the human similarity
measures and all binary representations using three
similarity models. CW=complete word, SW=stopped
word, N3=3-gram, and so on. The dashed line shows
the inter-rater correlation.

considered by Rorvig (1999). Using his terminology,
these are the Correlation model:

scor
ij =

∑
k xikxjk∑

y cik +
∑

k xjk
,

the Jaccard model:

sjac
ij =

∑
k xikxjk∑

k xik +
∑

k xjk −
∑

k xikxjk
,

the Cosine model:

scos
ij =

∑
k xikxjk

(∑
k x2

ik

∑
k x2

jk

) 1
2
,

and the Overlap model:

sove
ij =

∑
k xikxjk

min
(∑

k x2
ik,

∑
k x2

jk

) .

Results Figure 3 shows the correlations between the
human similarity measures, and those predicted by the
Jaccard, Cosine, Correlation and Overlap similarity
models. Once again, these correlations are shown for
complete and stopped word-based representations, and
3-gram through to 10-gram representations. Figure 3
shows that the differences between the four similarity
models are very small, but that there are important
differences in the performance supported by the un-
derlying document representations. Stopped represen-
tation leads to better performance than the complete
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Figure 3: Correlations between the human similar-
ity measures and all count representations using four
similarity models. CW=complete word, SW=stopped
word, N3=3-gram, and so on. The dashed line shows
the inter-rater correlation.

word representation, as with the binary representation
analysis. n-grams with length six or above are better
performed than smaller lengths. None of the correla-
tions reach the 0.5 level and, perhaps surprisingly, the
count representations generally led to worse correla-
tions with human performance than the binary repre-
sentations.

LSA Similarity Models
Measures LSA begins with a n×v matrix C = [cik]
where n is the number of words, v is the number of doc-
uments in the corpus, and cik is the frequency of the
i-th word in the k-th document. There are three con-
ceptually different components to the way LSA uses
this document representations to measure similarity.
These are the local weighting function, which mea-
sures the importance of a word within a document, the
global weighting function, which measures the impor-
tance of a word across the entire corpus of documents,
and the number of dimensions retained during the sin-
gular value decomposition, which makes assumptions
about the complexity of the underlying semantic reg-
ularities expressed by the corpus.

The three local weighting functions we considered
are based on the frequency of the i-th word in the k-th
document. The first local weighting function was just
this term frequency, the second was logarithmic in the
frequency, and the third was binary, taking the value
one if the frequency was non-zero. Intuitively, the first
two local weights give increasing importance to more
frequent words, but the logarithmic gives progressively

smaller additional emphasis to larger frequencies, while
the third measure is sensitive only to whether the word
is in the document. The first global weighting function
we considered normalized each word using the local
weighting function, the second was an inverse docu-
ment frequency measure, and the third global was an
entropy measure. More details are provided by Pin-
combe (2004).

Local and global weighting functions are used to gen-
erate a weighted corpus representation W = [wik]. In
LSA, this weighted representation is subjected to sin-
gular value decomposition. This involves choosing a
dimensionality d ≤ m for the subspace representation,
and finding the n×d orthonormal matrix U, the d×d
diagonal matrix D and the m × d orthonormal matrix
V that minimize the squared difference ‖W−UDVT‖.

The resulting n × d matrix N = [nik] is a least
squares best fit to W produced by zeroing all but the
largest d coefficients of D. The document similarities
are arrived at using a similarity measure similar to the
earlier Cosine model, the exact form of which is

scos
kj =

∑
i niknij

(
∑

i n2
ik

∑
i n2

ik)1/2
.

For the original corpus, in both its complete and
stopped forms, and using all nine possible pairings of
local and global weighting functions, we considered di-
mensionalities of 10, 20, 30, 40, and 50. For the ex-
tended corpus, again in both complete and stopped
forms, and using all weighting combinations, we con-
sidered dimensionalities of 10, 20, 30, 40, 50, 100, 150,
200, 250, and 300.
Results The results of these analyses are shown in
Figure 4. It is clear that altering the local weight-
ing function makes relatively little difference but that
changing the global weighting function does make a
difference. Entropy global weighting is generally su-
perior to normalized weighting, and both are better
than the inverse document frequency function. For
the 50 document corpus, performance is best when
there is no dimensionality reduction in the represen-
tation (i.e., when all 50 factors are used thus reducing
LSA to a weighted vector space model). Peak perfor-
mance for the extended 364 document corpus is bet-
ter and is achieved when between 100 and 200 fac-
tors are used. Applying the stop word list leads to a
significant improvement when using the (poorly per-
forming) inverse document frequency global weighting
function, and there is also a small improvement in most
other cases. The best performed LSA models, corre-
late about 0.6 with human judgments, which is better
than the keyword and n-gram vector space methods,
and at the base level of inter-rater correlation.
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Figure 4: Correlations between the human similarity measures and nine LSA similarity models, for each of four
situations corresponding to (a) the 50 document corpus; (b) the 50 document without stopwords; (c) the 364
document corpus; (b) the 364 document without stopwords. The nine similarity models consider every pairing of
the binary (‘bin’), logarithmic (‘log’) and term frequency (‘tf”) local weighting functions with the entropy (‘ent’),
normalized (‘nml’) and inverse document frequency (‘idf’) global weighting functions. The dashed lines shows
the inter-rater correlation.

Conclusion

We have argued that the automated measurement of
the similarity between text documents is fundamen-
tally a psychological modeling problem. This means
that various existing methods, widely used in infor-
mation science applications, ought to be assessed (at
least in part) in terms of their ability to model human
performance. This paper presents an assessment of
keyword, n-gram and LSA approaches against human
data for a small corpus of short news documents. We
considered a variety of existing cognitive models, us-
ing different representational assumptions—including
whether or not a stopword list was applied, whether
word frequency was considered, what n-gram length
was used, and how many LSA factors were used—and
a variety of different similarity modeling assumptions.

Using an extended corpus to retain about 100 fac-
tors, LSA under the entropy global weighting function
produced correlations of about 0.6, at the base level of
inter-rater correlation.. The best performed keyword
and n-gram models achieved correlations closer to
about 0.5. Many of the methods we considered showed
almost no correlation with human performance.

An examination of the relationship between mod-
eled and human similarity values shows two clear reg-
ularities that highlight weaknesses in the models we
examined. These regularities are well characterized
by the scatterplots shown in Figure 5, which show

the relationship between modeled and human values
for all documents pairs, using the common and dis-
tinctive similarity models, with 8-gram binary repre-
sentations. The performance of the distinctive model
is typical of those with near-zero correlations. This
scatterplot shows the model has no systematic rela-
tionship between modeled and human values, as would
be expected. The deficiencies evident for the common
model, however, are more interesting. It is clear that
when the model judges two documents to be highly
similar, it is correct. Its weakness is that it fails to
detect other high-similarity pairings, giving them rel-
atively low values. In information science terms, if the
task is to identify highly similar documents, the model
has very good precision, but poor recall. It seems that
the best performed models we examined are able to
detect only a subset of the highly semantically similar
document pairs.

These findings suggest alternative models of text
document similarity. Alternatives could arise from new
representations of text documents, specifying new sim-
ilarity models, or both. The performance of the com-
mon features model in Figure 5 suggests that it works
well when the underlying representations of two doc-
uments share features. More sophisticated represen-
tations might be able identified the common features
between the highly similar document pairs currently
being missed. Obvious candidates for improved repre-
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Figure 5: The relationship between model and human
judgments of similarity for all document pairs, using
the distinctive features (left panel) and the common
features models (right panel), using the binary features
representation based on 8-grams.

sentation include those used by the topics model (e.g.,
Griffiths and Steyvers, 2004) and the SP model (e.g.,
Dennis, 2004).

Alternatively, more complicated representations
might not be required if a more sophisticated similarity
model was used. We have in mind a similarity model
that judges documents in terms of their similarity rela-
tionships to other documents in the corpus. Intuitively,
there may be short paths between highly-similar docu-
ments as they are currently represented and measured,
even if that similarity is not evident from examining
the two documents being assessed in isolation. Recent
psychologically-motivated data-analysis methods that
focus on establishing global relationships using local
properties, such as ISOMAP (e.g., Tenenbaum et al.,
2000) provide a possibile starting point for examining
this idea.

Of course, to what extent these sorts of theoretical
improvements manifest themselves in applied benefits,
improving the performance of search engines, decision
support systems, or other text based systems, remains
an open question. We believe, however, they are av-
enues worth exploring.
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