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Abstract

A Bayesian interpretation of the Generalised Con-
text Model (GCM) is introduced. In this model, it
is assumed that participants sample a set of exem-
plars from memory, and make classification deci-
sions using similarity-based inference. It is shown
that these assumptions give rise to a space of hy-
potheses about the category, with a prior distri-
bution influenced by constraints on time and pro-
cessing, as well as assumptions about the struc-
ture of the environment. Under this view, the
response scaling parameter in the GCM plays a
central role, since it defines the basic structure of
the hypothesis space available in a categorisation
task.

The notion of bounded rationality was intro-
duced by Simon (1956), who argued that con-
straints on time and processing resources mean
that it is inappropriate for an organism to integrate
all of the information relevant to some decision.
Rather, a limited search process is a more ratio-
nal approach. This idea has been advocated more
recently by Gigerenzer and Todd (1999), who pro-
pose “fast and frugal” heuristic models of human
decision making. These heuristics should address
three questions:

• How should a stimulus environment be searched
for information?

• When should this search for information be ter-
minated?

• Once the search has been terminated, what de-
cision should be made given the available infor-
mation?

In contrast to this view, rational Bayesian mod-
els emphasise the statistical inferences warranted
by the information available to people. Rational
Bayesian accounts have been successfully applied
to a range of psychological phenomena such as
memory (e.g., Anderson & Schooler 1991, Shiffrin
& Steyvers 1997), categorisation (e.g., Anderson,
1990, 1991), generalisation (e.g., Shepard 1987,
Tenenbaum & Griffiths 2001) and causal learning
(e.g., Steyvers, Tenenbaum, Wagenmakers & Blum

2003), as well as problems such as inferring seman-
tic representations (Griffiths & Steyvers 2002) and
similarity models (Navarro & Lee 2003). Addition-
ally, the Bayesian framework arguably remains the
most coherent and powerful approach to statistical
inference and model selection (e.g., Jaynes 2003).
In this paper I argue that “bounded rationality”
fits very elegantly into a Bayesian framework, and
can be used to tie together a variety of ideas about
human categorisation.

Exemplars and categorisation

I begin by outlining a classic process model of cate-
gorisation, the Generalised Context Model (GCM;
Nosofsky, 1984, 1986). As it is standardly in-
terpreted, the GCM is a “computational process
model”, in that it describes an algorithmic method
of making categorisation decisions. It is not framed
in Bayesian terms, nor is the process explicitly tied
to some notion of fast and frugal decision making.
However, the model has a long empirical and the-
oretical tradition, and is widely regarded as one
of the most successful accounts of categorisation
phenomena.

Suppose that one’s prior experience of some cat-
egory consists of n previously observed instances.
According to the exemplar theory of classification,
a category is represented by storing all n instances
(Medin & Schaffer 1978, Nosofsky 1984, 1986). In
the Generalised Context Model (GCM; Nosofsky,
1986), the probability p(C | i) with which people
decide that the ith stimulus belongs to the cate-
gory C is proportional to the sum of the similarities
sij to the individual exemplars. It is convenient to
refer to this sum as the GCM similarity between
the ith stimulus and the category, denoted s

(GCM)
iC ,

s
(GCM)
iC =

∑

j∈C

sij . (1)

Thus the model predicts that p(C | i) ∝ s
(GCM)
iC .

In calculating the similarity between two stimuli,
it is usually assumed that stimuli are represented



as points in an m-dimensional Minkowski space),
though this is not essential to the theory (e.g.,
Tversky 1977). Following Shepard (1987), simi-
larity is assumed to decrease exponentially with
distance. Correspondingly the similarity sij be-
tween the ith and jth stimuli is given by sij =
exp (−λdij) where the attention-weighted distance
dij is

dij =

(
m∑

k=1

(wk |xik − xjk|)r

)1/r

(2)

and xik is the coordinate value of the ith stimu-
lus on dimension k. In this equation, wk denotes
the proportion of attention applied to the kth di-
mension, r determines the metric, and λ denotes
the steepness of the exponential decay, called the
generalisation gradient.

A more recent version of the model (Ashby &
Maddox 1993), GCM-γ, assumes that the summed
similarities are raised to some power γ, adding an
extra parameter and altering the probability of cat-
egory membership. Thus,

s
(GCM-γ)
iC =


∑

j∈C

sij




γ

(3)

and the model now predicts that p(C | i) ∝
s
(GCM-γ)
iC .

Bayesian Framework
A Bayesian framework for categorisation is sim-
ple enough to outline (see Anderson 1990, 1991).
If people can entertain a number of distinct hy-
potheses h ∈ H about a category, each of which
describes a distribution over stimuli in the environ-
ment, then the overall category density is found by
marginalising over these hypotheses,

p(i |C) =
∑

h

p(i |h)p(h).

Using Bayes theorem, the posterior probability of
choosing category C is simply,

p(C | i) =
p(i |C)p(C)

p(i)
.

The focus in this paper is on the category density
p(i |C), and in understanding how a particular cat-
egory becomes associated with a particular distri-
bution over stimuli. In what follows, a Bayesian
formulation of GCM-γ is presented, based on the
fast and frugal approach of Gigerenzer and Todd
(1999).

Similarity-Based Decisions

In a categorisation context, the set of previously
encountered exemplars (assumed to be stored in
memory) constitutes an environment that provides
information about the category. An exemplar-
based fast and frugal approach to categorisation
would engage in some limited search through this
environment, accumulating evidence required to
make a decision. For the moment, assume that in-
formation about the category is retrieved stochas-
tically from memory by sampling a set of γ ex-
emplars with replacement. The outcome of such
a sampling process can be expressed by the vector
φ = (φ1, . . . , φn), where φj indicates the number of
times that the jth exemplar is sampled, and where∑

j φj = γ. I refer to the outcome of this sampling
process as the φ-mixture.

In this section I consider how decisions might on
the basis of having sampled the φ–mixture. We
can view this set of exemplars as having produced
a hypothesis hφ about the category. Following the
principles of Bayesian inference outlined earlier, we
can treat this hypothesis as a distribution p(i |hφ)
over potential stimuli. Notice that this implies a
probabilistic response to stimuli, reflecting some
uncertainty about the environment. The issue is
how to define this distribution appropriately.

It has frequently been argued that categorisa-
tion substantially relies on similarity (see Komatsu
1992). The idea was perhaps best expressed by
Shepard (1994), who argued that stimulus repre-
sentations are shaped by evolution or prior learn-
ing to reflect the structure in the environment. So
our perceptions of similarity are viewed as reflect-
ing the probability with which stimuli are expected
to share consequences (e.g., Shepard 1987, Tenen-
baum & Griffiths 2001). As a consequence, to
the extent that categories reflect the same struc-
tures, we should expect similarity and categori-
sation to be closely related. While there are a
number of respects in which categorisation and
similarity are thought to differ (e.g., Rips 1989),
similarity-based models of categorisation such as
the GCM have generally been empirically success-
ful over the years.

Given a set of sampled exemplars indicated by φ,
the question that arises is how they should relate
to p(i |hφ). In the original GCM, similarities are
assumed to combine additively. In contrast, proto-
type models such as those advocated by Smith and
Minda (1998) tend to combine similarities in a mul-
tiplicative manner. In what follows, I will adopt a
multiplicative similarity rule, which implies that,

p(i |hφ) ∝
∏

j

s
φj

ij . (4)



The multiplicative similarity rule has previously
been discussed by Nosofsky (1984). If stimuli are
spatially represented, for instance, then multiply-
ing similarities is equivalent to summing distances.
Thus the comparison between the observed stim-
ulus and the sampled exemplars takes place at a
representational level, which agrees with the no-
tion that the set of exemplars forms a single hy-
pothesis. In contrast, summing similarities would
imply that each member of the set is compared to
the observed stimulus in isolation and then com-
bined, suggesting a decision process rather than a
representational one. Note that the effect of this
assumption is to require that all the sampled ex-
emplars have some similarity to the novel stimulus.

The normalising constant for this distribution is
found by integrating the similarity measure over
all the space of all possible stimuli, so the density
function is given by,

p(i |hφ) =

∏
j s

φj

ij∫ ∏
j s

φj

xj dx
,

where the integration over x is taken over all possi-
ble stimuli. For instance, if stimuli are represented
spatially, then the integration is taken over the en-
tire space. Obviously, this integral would be diffi-
cult to calculate in many cases, but as we will see,
it drops out of the final expression for p(i |C).

Searching Memory Quickly

From a bounded rationality perspective, it is as-
sumed that human inference is based on a limited
search of the environment. If the memory environ-
ment consists of the set of n previously observed
exemplars, one might sample a set of γ exem-
plars independently with replacement from mem-
ory. The advantages to this process are speed and
simplicity. Only a limited number γ of samples are
required, and the samples are entirely independent
of one another, and so could presumably be imple-
mented in a straightforward manner. This sam-
pling scheme implies that the probability of sam-
pling the hypothesis hφ is equivalent to the prob-
ability of sampling the corresponding multiset φ
from a set of arbitrary tokens. This induces the
following prior:

p(hφ) ∝
(

γ
φ1,...,φn

)
,

where
(

γ
φ1,...,φn

)
= γ!

φ1 !...φn ! . Notice that this
choice answers the first two questions posed by
Gigerenzer and Todd (1999): search is random,
and terminates after γ samples have been drawn.

Although such a search is likely to be both fast
and frugal, it does not exploit the structure of the
environment in a manner consistent with Simon’s
(1956) view of bounded rationality. In particular,
it does not capture the notion that the sampled
exemplars are supposed to represent a hypothesis
about a category. Rather, exemplars are treated
as arbitrary tokens sampled independently with
replacement. In practice, this seems implausible.
For instance, a set of instances that includes three
oranges and two lemons seems to be a priori more
likely to form a useful hypothesis about a natu-
ral category than three oranges and two automo-
biles. The former seems to capture some compact
structure, while the latter seems like a conjunc-
tion of two distinct hypotheses. In other words,
the samples are not likely to be conditionally in-
dependent of one another. A set of interrelated
exemplars forms a good hypothesis, while unre-
lated exemplars do not. This is a form of prior
knowledge about the environment, which should
have some impact on the prior beliefs expressed
through p(hφ).

In order to address this, consider the following
argument. The nature of the sampling process
places an inherent prior over a collection of ar-
bitrary tokens. However, since these tokens have
representational content, we have some additional
evidence about the prior likelihood that those to-
kens refer to a category. If categorisation decisions
are based on similarity, and since a set of very
disparate exemplars cannot all be highly similar
to anything, it is reasonable to assume that they
are less likely to consitute a natural category. In
short, the prior probability assigned to a set of ex-
emplars ought to be related to their ability to be
jointly similar to future stimuli. If we denote this
additional evidence as p(h ∈ C |hφ), then this ar-
gument suggests that

p(h ∈ C |hφ) ∝
∫ ∏

j

s
φj

xj dx.

In this expression, h ∈ C denotes the observation
that h refers to a category of some kind. An ap-
propriate prior should incorporate this evidence
through Bayes’ rule, from which we obtain the
prior,

p(hφ |h ∈ C) ∝ p(h ∈ C |hφ)p(hφ)

∝
(

γ
φ1,...,φn

)∫ ∏

j

s
φj

xj dx. (5)

However, for the remainder of the paper, I will
drop the “h ∈ C” term, and refer to the quantity
in Eq. 5 as p(hφ).



At this point, it is worth reflecting on the impli-
cations of this prior. The prior incorporates two
sources of evidence, namely the prior probability
of sampling a collection of tokens, and the prob-
ability that the representational content of those
tokens constitutes a viable hypothesis about a cat-
egory. The “token sampling” component of the
prior arises because people have limited resources
(e.g., time, computation), and so can only afford to
engage in a limited search of memory. On the other
hand, the “representational” component arises be-
cause some collections of stimuli are less likely to
form a natural category in the environment. So
the prior distribution that I have discussed reflects
constraints on time and processing, as well as (be-
liefs about) pre-existing structures in the environ-
ment. It is in this respect that the prior distribu-
tion is viewed as boundedly rational.

That said, there are some important caveats that
attach to the prior. Firstly, it is deliberately chosen
so as to ensure that the Bayesian model is equiva-
lent to GCM-γ (see below). No strong claims are
made as to whether this is “really” the right prior,
merely that it is possible to induce a prior by think-
ing about contraints on time and processing, as
well as the structure of the environment. Secondly,
a strong (rather than merely pragmatic) committ-
ment to the notion of bounded rationality requires
a fast heuristic that samples hypotheses with prob-
ability p(hφ). To do this, we would need a process
in which there exists some dependency between
samples from memory, in which similar exemplars
tend to be retrieved together. This seems quite
plausible, given the literature on semantic prim-
ing (e.g., Meyer & Schvaneveldt, 1971). It would
almost certainly be possible to devise such a sam-
pling scheme, and it would be interesting to see
how closely this process agrees with existing views
of memory. However, such a discussion is beyond
the scope of this paper.

Bounded Rationality of GCM-γ

The probability that category C is the appropri-
ate one having observed stimulus i can be found
using Bayes rule, so p(C | i) ∝ p(i |C)p(C). If all
categories are equally likely a priori, then the p(C)
term is a constant, and Bayes’ rule implies that
p(C | i) ∝ p(i |C). Of course, this need not be true
in general, so the prior probability of the category
would need to be determined. Nevertheless, since
the focus of this paper is on the category density
p(i |C), this complication will not be discussed fur-
ther.

In any particular categorisation experiment, the
sampled hypotheses are unobservable. All that we
can observe are the categorisation decisions. So we

can use the results from previous sections to ex-
press the (marginal) probability of observing stim-
ulus i given the category C, as

p(C | i) ∝ p(i |C)

=
∑

φ

p(i |hφ)p(hφ)

=
∑

φ

(
γ

φ1,...,φn

)∏

j

s
φj

ij (6)

=


∑

j

sij




γ

= s
(GCM-γ)
iC .

where the last step corresponds to the factorisa-
tion of a polynomial. In other words, the Bayesian
model just derived is equivalent to GCM-γ.

Notice that there is a natural structure that
arises because similarities are assumed to be ex-
changeable. Suppose that n = γ = 4. We
then have four hypotheses that belong to the class
that we usually refer to as “exemplars”, namely
φ = (4, 0, 0, 0), φ = (0, 4, 0, 0), φ = (0, 0, 4, 0),
and φ = (0, 0, 0, 4). Equivalently, there is a sin-
gle term that belongs a “quasi-prototype” class,
namely φ = (1, 1, 1, 1). Along the same lines, it is
easy to see that φ = (2, 1, 1, 0) belongs to the same
class as φ = (1, 1, 0, 2), but that φ = (3, 1, 0, 0)
belongs to a different class altogether. Psychologi-
cally, a hypothesis class includes all possible prod-
uct terms that mix similarities in the same propor-
tions. The exemplar class is the trivial mixture of
only a single similarity, while the quasi-prototype
class mixes all similarities in equal proportions.
Thus, altering the value of γ leads to changes in the
hypothesis classes that are considered by GCM-γ.

Taking all this together, we can view the GCM-γ
category density as a weighted average of a number
of distinct hypotheses about the underlying cate-
gory, where the hypotheses can be naturally par-
titioned in terms of the mixture classes to which
they belong. This is shown in Figure 1, in which
there are four exemplars located in one dimen-
sional space, with co-ordinates of 0, 0.1, 0.3, and 1.
Setting γ = 4, the GCM-γ model predicts a kind
of “circus tent” category distribution, shown at the
back of the plot. While this category density does
not look very principled, the Bayesian view allows
us to decompose it into an average across a range
of different hypotheses. To that end, Figure 1 also
plots each of the individual hypothesis distribu-
tions, arranged by the mixture class to which they
belong. Additionally, the size of each distribution
is scaled in order to indicate how much each hy-
pothesis contributes to the overall marginal distri-
bution.



Figure 1: The decomposition of GCM-γ for a one-
dimensional category with four exemplars and a
smoothing parameter of γ = 4. Each of the terms
in the expansion produces a unique generalisation
gradient, and belongs to one of five natural classes.

If we restrict the prior distribution p(hφ) to one
based on the “token sampling” view, in which γ ex-
emplars are sampled randomly, independently, and
with replacement, then it is trivial to see that some
hypothesis classes are more likely than others. For
example, it is much easier to sample a (2, 2, 0, 0)
mixture than a (4, 0, 0, 0) when p(hφ) ∝

(
γ

φ1,...,φn

)
.

However, in this sampling scheme all hypotheses
within a class are equally likely. But when the
prior incorporates the representational constraints
discussed earlier, there is considerable variation
within a hypothesis class. Hypotheses that com-
bine distant (and hence dissimilar) stimuli receive
very low weight, such as the (2, 2, 0, 0) mixture that
combines the stimulus at 0 with the stimulus at 1
in Figure 1. In fact, the weight assigned to that
hypothesis is so small that it is almost invisible.

Looking at the Figure as a whole provides a nice
theoretical interpretation of the “circus tent” dis-
tribution. There are a lot of hypotheses in the
region between 0 and 0.3 that are assigned a high
likelihood. So when γ = 1, the hypothesis space
contains only the exemplars. When this is raised
to γ = 4, the hypothesis space is expanded in such
a way as to assign more weight to the regions be-
tween adjacent exemplars.

A similar effect is seen in Figure 2, in which
there are still four exemplars, but γ is raised to 5.
However, the exemplars are now located at 0, 0.2,

Figure 2: The decomposition of GCM-γ for a one-
dimensional category with four exemplars and a
smoothing parameter of γ = 5. Each of the terms
in the expansion produces a unique generalisation
gradient, and belongs to one of six natural classes.

0.9 and 1. Because these now fall into two natu-
ral clusters, the hypotheses with high prior weight
are those that mix the two small-valued stimuli
or the two large-valued stimuli, producing a “twin
peaked” distribution. Also, notice that since γ 6= n
in this case, there is no “quasi-prototype” in which
all exemplars mix equally.

Discussion
It is interesting to observe that in order to translate
GCM-γ into a more overtly probabilistic frame-
work, the prior distribution p(hφ) had to be chosen
in a way that incorporated both a sampling process
for φ and rational considerations about the struc-
ture of natural categories. This may not be en-
tirely coincidental, if one accepts the view that hu-
man cognition is conditionally rational given con-
straints on time and information processing (e.g.,
Anderson 1990, Gigerenzer & Todd 1999). In or-
der to make timely categorisation decisions, people
may only spend a limited amount of time drawing
information from memory, as captured by the γ
parameter in exemplar models.

That said, there is a sense in which this work is
preliminary, and the approach could be expanded.
In particular, the Bayesian inference introduced
here integrates over a set of hypotheses that people
might entertain, but the sampling process that un-
derlies this hypothesis space suggests that only one
hypothesis is considered at any given time. As a re-



sult, if people test hypotheses sequentially (as sug-
gested by Nosofsky, Palmeri & McKinley’s (1994)
RULEX model, for instance), then the Bayesian
interpretation of GCM-γ would predict sequential
dependencies in categorisation performance. Fur-
thermore, there is an inherent confound in GCM-γ,
in that γ controls the diversity of the hypothesis
space and acts as an evidence parameter that gov-
erns the way hypotheses are sampled from that
space. It is not clear whether these two roles are
distinct in human categorisation. If they are, then
this may suggest possible refinements to exemplar
models. Finally, since this paper has started from
GCM-γ and worked towards a rational Bayesian
interpretation, it would be interesting to consider
the other direction. The GCM is implicitly built
on Shepard’s (1987) rational analysis, so it might
be that one could start with the rational consider-
ations and derive a categorisation model that be-
haves quite similarly to GCM-γ.
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