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Abstract 

Studies of human problem solving have traditionally used 
deterministic tasks that require the execution of a 
systematic series of steps to reach a rational and optimal 
solution. Most real-world problems, however, are 
characterised by uncertainty, the need to consider an 
enormous number of variables and possible courses of 
action at each stage in solving the problem, and the need to 
optimise the solution subject to multiple interacting 
constraints. There are reliable individual differences in 
people’s abilities to solve such realistic problems. It also 
seems likely that people’s ability to solve these difficult 
problems reflects, or depends on, their intelligence. We 
report on a study of N = 101 adults who completed a series 
of visual optimisation problems (Travelling Salesperson, 
Minimum Spanning Tree, and Generalised Steiner Tree 
problems), as well as a cognitive optimisation problem (a 
version of the Secretary problem). We also characterised 
these individuals along three relevant and important 
cognitive abilities dimensions, fluid ability, visuo-spatial 
ability, and cognitive processing speed. Modelling of 
covariance structures indicated that performance on both 
types of optimisation problems relies on general 
intelligence and raises the possibility that they can be used 
to assess intelligence. 

Introduction 
This paper describes a study on individual differences in 
two classes of decision making problems: difficult 
optimisation problems that are presented visually and 
which can be thought of as perceptual problems; and a 
difficult sequential decision-making task that involves 
uncertainty and places demands on working memory and 
which can be thought of as a cognitive problem. 

Recent research has explored whether performance on 
perceptual optimisation problems, particularly the 
Travelling Salesperson Problem (TSP; Lawler, Lenstra, 
Rinooy Kan, & Shmoys, 1985), depends on psychometric 
intelligence (e.g., Vickers, Butavicius, Lee, & Medvedev, 
2001; Vickers, Mayo, Heitmann, Lee, & Hughes, 2004). 
Vickers et al. (2004) reported that in two separate studies 
performance on TSP correlated with scores on Raven’s 
Advanced Progressive Matrices (Raven, Court, & Raven, 
1988) to the extent of about 25 per cent shared variance. 
Correlations were of similar magnitude for two other 
perceptual optimisation problems, known as the Minimum 
Spanning Tree Problem (MSTP: Ahuja, Magnanti, & 
Orlin, 1993) and Generalised Steiner Tree Problem 
(GSTP: Hwang, Richards, & Winter, 1992). There are no 
published reports of relationships between sequential 
decision-making tasks and psychometric intelligence, but 
clear and reliable individual differences in performance on 
one such task, the full-information version of the 
Secretary Problem, have been described (Lee, O’Connor, 
& Welsh, 2004). 

Meanwhile, theories on the structure of human 
intelligence have converged on a model that incorporates 
at least two strata but arguably three. The first stratum 
comprises over 60 abilities that are rather narrow and 
which correspond conceptually to Thurstone’s Primary 
Mental Abilities (Thurstone, 1938, 1947). The pattern of 
inter-correlations among these first-stratum abilities 
defines about ten broad abilities at the second stratum. 
These second-stratum abilities include fluid and 
crystallised intelligence, as first described by Cattell 
(1943, 1963), along with others more recently described, 
primarily by Horn and co-workers (see Horn & Noll, 
1997). Controversy remains on the interpretation of the 
pattern of intercorrelations among these broad second-
order abilities. Many researchers and theorists argue for 
the existence and primacy of a third-stratum general factor 
(g; see Carroll, 1993; Jensen, 1998) while others dismiss 
the importance of g (e.g., Stankov, 2002). Deary and 
Caryl (1997) make the point that whether the broad 
second-order abilities or the putative third-order general 
factor are considered most important depends on the 
particular research question at hand. The point of all this, 
however, is that it is no longer sufficient to attempt to 
understand human intelligence, its determinants or 
consequences, in terms of scores on a single psychometric 
instrument such as Raven’s Matrices. 

Here, we examine the relationship of individual 
differences on difficult perceptual and cognitive problems 
with psychometric tests chosen to define the three most 
relevant broad cognitive abilities identified by modern 
theories of human intelligence: fluid ability (Gf), visuo-
spatial ability (Gv), and cognitive processing speed (Gs). 

Perceptual Optimisation Problems 
As described in more detail elsewhere (Vickers et al., 

2004), much research into the relationship between 
problem solving processes and other cognitive abilities 
has concentrated either on knowledge-lean problems 
suitable for experimental study, or on complex but domain 
specific real-world problems. Vickers at al. argued that 
difficult combinatorial optimisation problems have the 
advantage that while there is often no algorithm that can 
produce a definitive solution to them in a reasonable time, 
they can be simply stated and readily understood. 
Moreover, they can be representative of real-world 
situations and human performance on them is often close 
to optimal (e.g., Graham, Joshi, & Pizlo, 2000). 

In the TSP, participants are given a set of n 
interconnected nodes which lie on a 2-D Euclidean space 
and they must devise an itinerary that visits each node 
exactly once, returns to the starting node, and ensures that 
the total length of the tour is as short as possible. To arrive 
at a definitive solution to this problem entails an 



exhaustive consideration of (n-1)!/2 pathways (see Figure 
1a).  

In MSTP, participants are required to find the shortest 
path that directly links all the nodes in an array. This 
problem has fewer constraints than TSP because the path 
does not have to be continuous and closed and a node can 
be connected by more than two links. The optimal 
solution is an open, branching path system, which directly 
links all the nodes and in which branches occur at the 
nodes (see Figure 1b). 

In the elementary three-node Steiner Tree Problem, the 
shortest path connecting three nodes in a plane can be 
found by determining the so-called Fermat point and 
creating a path of links that branch at that point (as 
illustrated in Fig. 1c). GSTPs contain more than three 
nodes and the solutions to these problems look like 
combinations of solutions found in three-node Steiner 
Tree problems, with additional nodes (P1, P2,…,Pk) as 
branch points to create the minimum connections between 
the original nodes, as illustrated in Fig. 1d. 

Vickers et al. (2004) showed that performance on 
versions of these three tasks was characteristic of an 
individual, with the average intercorrelation among the 
three tasks implying about 50% shared variance. 
Moreover, correlations on performance across two rotated 
versions of these tasks were good with them mean across 
three tasks being about r = .7. 

 
Figure 1. (a) 50-node TSP array; (b) 50-node MTSP 

array. For both (a) and (b) the optimal solution is shown 
as solid connecting edges. (c) the Fermat point (P) for a 
simple Steiner Tree problem as an open circle, with the 
optimal solution shown by broken lines. (d). 15-node 
GSTP with the interpolated open points (open circles) and 
the optimal tree solution (broken lines) found by a 
computer algorithm. 

Cognitive Optimisation Problem 
Many real world decision-making problems are sequential 
in nature. A series of choices is made available over time 
and it is often efficient (and sometimes even necessary) to 
make a selection without waiting to be presented with all 
of the alternatives. This decision-making scenario has the 
same essential features as a recreational mathematics 
problem known as the Secretary Problem (see Ferguson, 
1989, for a historical overview). In Secretary Problems, 

participants are presented with a sequence of possible 
choices and must decide whether to accept or reject each 
possibility in turn. The so-called ‘full information’ version 
of the problem presents participants with a score from a 
known distribution for each possibility; the goal is to 
choose the maximum score in the sequence and any 
incorrect decision is equally wrong. Gilbert and Mosteller 
(1966) showed that the optimal decision rule for these 
problems requires choosing the first value that exceeds a 
threshold level for its position in the sequence. 

Because they are not inherently perceptual, Secretary 
Problems allow consideration of whether results obtained 
with perceptual optimisation problems generalise to 
cognitively-based problem solving. Secretary Problems 
also introduce uncertainty and place demands on working 
memory. While visual problems like TSPs are 
combinatorially large, the basic information about 
distances between points is always perceptually available 
in a complete and certain form to the problem solver. By 
contrast, the sequences of information in secretary 
problems are stochastic and presented only temporarily, 
requiring people to deal with uncertainty and to rely on 
their memory. 

The Current Study 
To understand better the previously reported relationship 
between performance on difficult optimisation problems 
and one, albeit limited, measure of intelligence and to 
extend that line of research to include a sequential 
decision-making problem, we administered TSP, MSTP, 
GSTP, and Secretary Problems as well as marker tests for 
Gf, Gv, and Gs. We used a sample of sufficient size to 
model relationships of the problem solving tasks and 
psychometric tasks using analysis of covariance 
structures. A series of alternative theoretically plausible 
models were compared to delineate further the 
relationships reported by Vickers et al (2001, 2004). 

Methods 

Participants 
There were N = 101 participants (58 males; mean age = 
25.3, SD = 7.6 years) recruited from the general 
community via advertisements and word-of-mouth. All 
were paid A$30 at completion of the study. 

Materials 
Perceptual Optimisation Problems  Problems were 
presented, one at a time, in a 15 cm x 15 cm square in the 
centre of a standard 19-inch computer display. 
Participants could begin at any point by left-clicking on a 
node (or on a location where they wished to establish a 
new node) with the computer mouse. They drew a path by 
‘dragging’ the mouse cursor to a subsequent node and 
releasing the button, causing a straight line to be drawn 
between that node and the previously visited node. By 
right-clicking on a link (or created node) to select it, and 
then pressing the ‘‘Delete’’ key on the keyboard, 
participants could undo any links or nodes they had 
drawn. Participants were thus free to connect the nodes in 
any order, to work alternately from two nodes, or to work 



on several separated clusters of nodes. If a participant’s 
completed solution was invalid (e.g. because not all TSP 
nodes had been connected), a warning message was 
posted on the screen and the participant was obliged to 
construct a valid solution before proceeding to the next 
problem. 

Participants completed one 30-, 60-, and 90-node TSP 
and the same for MSTP; and one 15-, 20-, and 25-node 
GSTP. Participants were given verbal instructions and 
there were also instructions on the computer screen which 
could be re-displayed at any time by clicking on a button. 
There were no time constraints on performance, but 
participants were asked to complete the tests as quickly 
and as accurately as they could. 
Secretary Problem  Each participant completed two sets 
of problems presented on a computer. The first set 
consisted of 40 problems of length 5 and the second 40 
problems of length 10. Participants did the sets in the 
same order—length 5, then length 10—but the order of 
the problems within each set was randomised across 
participants. For each problem, the participants were told 
that the values they would see were dollar amounts 
ranging from zero to one hundred dollars. They were told 
the length of the sequence and were instructed to choose 
the maximum value. It was emphasised that (a) the values 
were uniformly and randomly distributed between 0.00 
and 100.00, (b) a value could only be chosen at the time it 
was presented, (c) the goal was to select the maximum 
value, with any selection below the maximum being 
completely incorrect, and (d) if no choice had been made 
when the last value was presented, they would be forced 
to choose this value. As each value was presented, its 
position in the sequence was shown, together with ‘yes’ 
and ‘no’ response buttons. 
Psychometric Tests  Participants completed custom 
computerised adaptations of the Raven Standard 
Progressive Matrices (SPM; Raven, 1956), Cattell Culture 
Fair Test Scale 2 Form A (CCF; Cattell & Cattell, 1959 ), 
and Spatial Relations from the Woodcock-Johnson 
Psycho-Educational Battery-Revised (WJ-R; Woodcock 
& Johnson, 1989). For SPM, participants worked through 
a series of up to 60 matrices questions; we used a timed 
version with a 20 min limit. The CCF has four sections, 
Series, Classification, Matrices and Conditions. 
Participants worked through examples, followed by the 
12, 14, 12, and 8 items for each section, respectively. Each 
section had a fixed time limit and the total test lasted 12.5 
min. Spatial Relations presented participants with a large 
shape comprised of smaller components. Next to this, 
were displayed a set of small shapes and participants 
decided which of these together constituted the large 
shape. The items become progressively more difficult 
with the shapes becoming more complex and with more 
components in each large shape. The test comprised 33 
items and finished when the participant answered 
incorrectly on six items in a row, or when they had 
completed all items. A fourth computerised test was 
Picture Swaps, based on a test described by Crawford 
(1988). Participants are required mentally to swap the 
order of three pictures presented on the computer screen, 
according to instructions also presented on the screen, and 
then to indicate the final order of the pictures. Once they 

had worked out the answer, they pressed the spacebar on 
the keyboard to bring up another screen displaying the six 
possible solutions, numbered 1 to 6. Participants 
responded via the keyboard numberpad. There were four 
difficulty levels for the test which differed in the number 
of swaps required (1-, 2-, 3-, or 4-swaps). There were six, 
items for both the one- and two-swap levels, and 12 items 
for the three- and four-swap levels. 

There were also three paper-and-pencil tests, Space 
Relations from the Differential Aptitude Tests Form W 
(Bennet, Seashore, & Wesman, 1989), Digit Symbol from 
the Wechsler Adult Intelligence Scale-III (Wechsler, 
1997), and Visual Matching from the WJ-R (Woodcock & 
Johnson, 1989). Apart from using only the 30 odd-
numbered items from Space Relations, these tests were 
administered according to instructions in the respective 
manuals. Space Relations had a time limit of 12.5 min, the 
other two tests had a time limits of 3 min. 

Procedure 
Participants attended the laboratory either individually, or 
two at a time. Paper-and-pencil tests were completed first 
in the order described above, followed by TSP, MSTP, 
GSTP, and Secretary Problem. The computerised 
psychometric tests were then completed in the order 
described above. There were two workstations separated 
by a partition so that participants attending in pairs were 
isolated from each other when completing the 
computerised tests. Testing sessions lasted about two 
hours. 

Results 
For the perceptual optimisation problems, participants’ 
solution lengths for each problem were expressed as a 
proportion above the benchmark, or best known, solution 
length (PAB) for that problem. Thus, a PAB score for an 
optimal solution would be 0 and any solution that 
exceeded the benchmark would have a positive score. The 
final measures used for TSP, MSTP, and GSTP in 
subsequent analyses were the mean PABs for the three 
problems of each type. For Secretary Problems the 
measure used was the mean proportion of trials for which 
the participant chose in accordance with the prediction of 
the optimal decision rule, averaged across length 5 and 
length 10 problems. 

For SPM, it is known that some items measure visuo-
spatial ability while others measure verbal-analytical 
reasoning (Lynn, Allik, & Irwing, 2004). We therefore 
created item parcels by summing across these different 
types of items. Hereafter, we designate these as SPM-VSp 
and SPM-VAR, respectively. A similar situation applies to 
CCF (see Burns & Nettelbeck, 2003). Again, we created 
item parcels hereafter designated CCF-VSp and CCF-
VAR. For Spatial Relations, Picture Swaps, Space 
Relations, Digit Symbol and Visual Matching, total items 
correct scores were used. Table 1 shows descriptive 
statistics for measures used in subsequent analyses. SPM-
VSp, CCF-VSp, Spatial Relations and Space Relations 
were included as measures of Gv; SPM –VAR, CCF-VAR 
and Picture Swaps as measures of Gf, and Digit Symbol 
and Visual Matching as measures of Gs. 



Table 1: Descriptive statistics and Pearson correlations for optimisation problems, Secretary Problem, and psychometric 
measures for N = 101 participants. 

1 TSP 1 2 3 4 5 6 7 8 9 10 11 12 13 
2 MSTP .54             
3 GSTP .69 .78            
4 SecProb -.14 -.10 -.13           
5 SPM-VSp -.27 -.22 -.39 .21          
6 SPM-VAR -.36 -.29 -.43 .23 .52         
7 CCF-VSp -.25 -.20 -.23 .14 .40 .38        
8 CCF-VAR -.31 -.20 -.31 .24 .28 .42 .48       
9 SpatRel -.36 -.27 -.35 .25 .45 .49 .50 .32      

10 PicSwaps -.25 -.19 -.28 .37 .58 .35 .39 .31 .46     
11 SpaceRel -.38 -.11 -.29 .20 .30 .32 .47 .51 .35 .42    
12 DigSym -.09 -.12 -.10 .15 .26 .33 .13 .32 .08 .34 .19   
13 VisMat -.14 -.25 -.14 .19 .34 .33 .23 .28 .15 .37 .22 .63  

 Mean .093 .061 .140 .711 19.1 6.98 20.4 6.50 20.5 28.4 25.9 85.5 42.5 
 SD .041 .073 .104 .126 2.31 3.75 3.26 2.22 4.63 7.62 4.84 15.4 5.54 

Note: TSP is Travelling Salesperson Problem; MSTP is Minimum Spanning Tree Problem; GSTP is Generalised Steiner 
Tree Problem; SecProb is Secretary Problem; SPM-VSp is Standard Progressive Matrices-Visuo-Spatial; SPM-VAR is 
Standard Progressive Matrices-Verbal Analytic Reasoning; CCF-VSP is Cattell Culture Fair-Visuo-Spatial; CCF-VAR is 
Cattell Culture Fair-Verbal Analytic Reasoning; SpatRel is Spatial Relations; PicSwaps is Picture Swaps; SpaceRel is 
Space Relations; DigSym is Digit Symbol; VisMat is Visual Matching 
 
 

The first set of models to be compared here is as 
follows: first, a model where all variables load a single 
latent variable; thus, this model proposes that covariances 
of all variables depends on a single construct, general 
intelligence. This is referred to hereafter as Model 1. 
Second, a model is proposed where performance on the 
problem solving tasks used here depends on a ‘problem 
solving ability’ different from but related to those 
currently described in psychometric theories of 
intelligence. This is referred to as Model 2. The next 
model allows that the combinatorial optimisation 
problems depend on Gv whereas Secretary Problem 
depends on Gf. This model, hereafter Model 3, arises 
prima facie on the basis of the requirements of these 
classes of tasks, as described above. All models were 
fitted using AMOS 5 (Arbuckle, 2003) or LISREL 8.5 
(Joreskög & Sörbom, 2003). 

Comparison of these types of models, often referred to 
generically as structural equation models, should be done 
using a range of fit criteria, specifically, goodness-of-fit 
and model complexity should be considered (Kline, 2005). 
Here we use the Bayesian Information Criterion (BIC; 
Schwartz, 1978; Raftery, 1995), the Root Mean Square 
Error of Approximation (RMSEA; Steiger & Lind, 1980) 
along with its 90% confidence interval, and the likelihood 
ratio chi-square. The BIC takes account of sample size 
and penalises model complexity; the RMSEA is a 
parsimony-adjusted index where values less than about 
.05 indicate close approximate fit and RMSEA greater 
than or equal to .10 suggests poor fit. The likelihood ratio 
chi-square tests the hypothesis that the model is correct 
but it is sensitive to the size of correlations and to sample 
size; commonly, to overcome these problems, it is divided 
by the model degrees of freedom and a rule-of-thumb is 
that this value should be less than about two for a good 

fitting model. Table 2 shows the fit criteria for the first set 
of models considered. 

None of the models fit the data well. Examination of the 
parameters of the best-fitting model, that is, Model 2, 
showed that GSTP had an estimated standardised 
regression weight on the latent variable representing 
“problem solving” of .98, while TSP, MSTP, and 
Secretary Problem had weights of .70, .78, and .13, 
respectively. These estimates suggest misspecification of 
this model arising because of collinearity of the perceptual 
optimisation problems. Therefore, these three variables 
were combined by standardising each and taking the 
mean. This new measure is hereafter referred to as 
Perceptual Optimisation Problems. This variable was 
incorporated into a new model, hereafter Model 4(see 
Figure 2), based on Model 3. It can be seen in Figure 2 
that Model 4 is better than any of the others considered so 
far. It should also be noted that this model can be 
equivalently represented with a higher-order general 
factor instead of correlated first-order factors. 

Table 2: Fit criteria for three models showing Bayesian 
Information Criterion (BIC), Root Mean Square Error of 
Approximation (RMSEA) and its 90% CI, and Likelihood 
Ratio Chi-Square. For comparison purposes, the relevant 
statistics are shown for the saturated model, where no 
constraints are imposed and fit is perfect; and for the null 
model where population correlations are assumed to be 
zero. 

Model BIC RMSEA CI90 χ2    (df) p 
1 356.5 .16 [.14, .18] 236.5 (65) <.001 
2 239.5 .07 [.04, .10] 91.8 (59) .004 
3 314.1 .14 [.11, .16] 180.3 (62) <.001 

Saturated 420.0 - 0 (0) - 
Null 596.6 .24 [.22, .26] 536.6 (78) <.001 
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Figure 2. Model 4 showing maximum likelihood 

estimates of standardised regression weights and fit 
criteria. See Tables 1 & 3 for variable names. 

The final model to be considered, hereafter Model 5, is 
suggested by examination of Figure 2 and has the 
interesting property of allowing all variables to load on a 
single latent variable, representing g, while at the same 
time allowing Digit Symbol and Visual Matching to load 
on an orthogonal latent variable representing Gs. 

Thus, Model 5 allows that in this sample and with these 
variables, Gf and Gv cannot be distinguished from each 
other (this is a not uncommon outcome, see Danthiir, 
Roberts, Pallier & Stankov, 2001), or from g (see also 
Gustaffson & Undheim, 1996). By contrast Gs is well 
marked. Model 5 has BIC = 167.7, RMSEA = .07. CI90 = 
[.02, .10], and χ2(43) = 61.6, p = .03. While this model is 
marginally less plausible than Model 4, because of the 
orthogonality constraint imposed, it shows the loadings of 
all variables on g after Digit Symbol and Visual Matching 
have been residualised for Gs ( see Table 3). 

Table 3: Maximum likelihood estimates of loadings on 
two orthogonal latent variables. See Table 1 for variable 
names except OpProb is mean of standardised scores for 
TSP, MSTP and GSTP. All estimated loadings differ from 
zero p < .001. Loadings fixed to zero marked as -. 

 g Gs 
OpProb .492 - 
SecProb .368 - 

SPM-VSp .642 - 
SPM-VAR .668 - 
CCF-VSp .617 - 

CCF-VAR .601 - 
SpatRel .662 - 

PicSwaps .649 - 
SpaceRel .594 - 
DigSym .357 .828 
VisMat .433 .575 

Discussion 
The main question of interest here was on the relationship 
between individual differences in performance on difficult 
optimisation problems and constructs described in modern 
psychometric theories of human intelligence. The two 
classes of problem solving tasks we used had the very 
desirable characteristic that they are representative of real-
world decision making scenarios. Definitions of 
intelligence invariably make reference to problem solving, 
along with the ability to reason, plan, think abstractly, 
comprehend complex ideas, learn quickly and learn from 
experience (see e.g., Neisser et al., 1996) but a common 
criticism of traditional intelligence testing is that it fails to 
capture the requirements of real-world problem solving. 

When difficult optimisation problems were jointly 
examined with a test of intelligence, robust relationships 
were found (Vickers et al. 2004). Here, we acknowledged 
that human intelligence is best described in terms of a 
hierarchical model of related abilities with constructs 
being most narrow at the foot of the hierarchy and very 
general at the apex. We sampled abilities with the aim of 
defining fluid ability (Gf), which includes reasoning 
abilities and working memory and is arguably 
indistinguishable from g; visuo-spatial ability (Gv), that is, 
abilities in apprehending the forms, shapes and positions 
of objects and forming and manipulating mental 
representations of those forms, shapes and positions; and 
cognitive processing speed (Gs) which many view as 
fundamental to individual differences in intelligence. 

We found that both a single general factor model 
(Model 1) and a model incorporating a separate problem 
solving ability (Model 2) were inadequate to account for 
the data we observed. A model (Model 4) that allowed a 
variable representing the perceptual optimisation problems 
to load Gv, and the Secretary Problem to load Gf, with 
both Gv and Gf correlated with each other and Gs, 
provided a good account of the data. Not reported here 
were variations on this model with the optimisation and 
secretary problems loading either on the alternate or on 
both latent variables (i.e., Gv and Gf); these were poorer 
fitting models. Thus, at this level of analysis, both classes 
of optimisation problems were shown as being relatively 
good measures of Gv or Gf, respectively. 

The final model considered comprised two orthogonal 
latent variables. All variables loaded on general ability but 
the two cognitive speed measures also loaded on Gs. This 
arrangement allowed us to assess the g-loadings of all 
measures. The main outcome was that the variable 
representing the combinatorial optimisation problems had 
a loading of about .5 on g, while Secretary Problem had a 
loading of about .4. These loadings are high enough to 
encourage us to speculate that both of these types of 
problems could prove useful as measures of cognitive 
ability. 

Much work is required before, for example, TSP or 
Secretary Problem could be routinely used to assess 
intelligence; clearly, performance on both types of 
problem should be validated against criteria other than just 
intelligence tests so as to determine their predictive 
validity. Such problems may fill a gap in current test 
batteries because they are demonstrably related to real-



world problem solving; and performance on them does not 
depend on acculturated knowledge. 
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