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Abstract

We pick up where the Dry et al. paper in this volume
left off. We provide an accumulator model account of
the four basic regularities in decision-making and con-
fidence observed in that study. The model captures
the regularities with interpretable parameter values,
and we show its ability to fit the data is not due to
excessive model complexity. Indeed, all of the regu-
larities in human performance are elegantly accounted
for in terms of the adaptive processes of the accumu-
lator model.

Introduction

We pick up where the Dry et al. paper in this vol-
ume left off. Figures 1 and 2 show the basic patterns
of empirical confidence and decision-making behaviour
that we are attempting to model. Figure 1 shows the
pattern of change of mean confidence for advice trials
and no-advice trials across the six experimental condi-
tions. Figure 2 shows the pattern of change in advice
acceptance behavior across the six conditions. For ad-
vice trials, the mean proportion of trials for which the
advice was accepted is shown. For no advice trials, the
mean proportion “go left” decisions is shown.

There are four essential regularities of these data we
would like to model. These are:

e Confidence on advice trials shows a slight inverted
U-shape across the conditions.

e Confidence on no-advice trials decreases across the
conditions.

e Advice is almost always accepted.

e Decisions are consistent with guessing on no-advice
trials.

The Model

We model the behavior of subjects in this task using
an accumulator sequential sampling process (Vickers,
1979). This class of model involves sampling evidence
from the environment until some decision criterion is
reached, producing the decision behavior, and then po-
tentially adapting in several ways. We first describe
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Figure 1: The pattern of change of mean confidence
for advice trials and no-advice trials across the six ex-
perimental conditions. Error bars shows one standard
erTor.
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Figure 2: The pattern of change in advice acceptance
behavior across the six conditions. Error bars show
one standard error.



the information environment we assume to be sam-
pled, then the sequential sampling process itself, and
then the ways in which the model learns from feedback,
and self-regulates its decision-making mechanisms.

Evidence Distributions

The model assumes subjects make decisions by sam-
pling evidence for the left and right alternatives, based
on their current knowledge of the task environment.
Separate probability distributions, m;, 7. and m, are
maintained for representing the evidence provided by
“go left”, “go right” and “uncertain” advice, respec-
tively. We assume that initially subjects are maxi-
mally ignorant about the rate that “go left” or “go
right” advice will be correct, but that the “uncertain”
advice conveys the information that either choice could
possibly be correct.

As Jaynes (2003) demonstrates, these two different
states of knowledge must be represented using differ-
ent probability distributions. In the “uncertain” ad-
vice case, where it is at least known both choices are
possibly correct, the uniform prior captures the par-
tial ignorance of the subject. For the “go left” and
“go right” advice, where it is not even known that
both choices could possibly be correct (i.e., it could be
the advice is always correct), the complete ignorance
of subjects is represented by the Haldane distribution.
Conveniently, both of these distributions can be repre-
sented as Beta distributions, so that we have the priors

m | H ~ Beta(0,0),
m | H ~ Beta(0,0),
m | H ~ Beta(l,1),

where H explicitly recognizes the background assump-
tions we are making.

We assume the probability distributions associated
with “go left” and “go right” advice are modified as
this advice proves to be ‘good’ (i.e., correct) or ‘bad’
(i.e., incorrect). This information is summarized by
four counts: g;, the number of times “go left” advice
has proven to be good; b;, the number of times “go
left” advice has proven to be bad; g,, the number of
times “go right” advice has proven to be good; and b,
the number of times “go right” advice has proven to be
bad. Using these counts, m; and 7, are updated using
Bayes theorem, giving

Beta (g1, br) ,
Beta (g, by)

7 g,bi, H o~
T | Grsbry H o~
For the “uncertain” advice, we assume that no up-

dating takes place, and that m, continues to be the
uniform distribution.

Sequential Sampling Process

Given these assumptions about evidence distributions,
the accumulator sequential sampling process proceeds
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Figure 3: A flowchart describing the self-regulation ac-
cumulator model.

according to the flow diagram shown in Figure 3. At
the beginning of a series of trials (i.e., at the beginning
of a condition), criterion evidence totals, k; and k., for
making left and right decisions respectively, are both
set to a value k.

Advice is then provided, corresponding to a proba-
bility distribution 7. On each iteration, an indepen-
dent sample is taken from this evidence distribution
on the log-odds scale, since the model adds successive
evidence values. Thus,

e ~ log T~
On each iteration, if e is positive, it is added to a right
accumulator, t,.. If e is negative, its absolute value is
added to a left accumulator, ¢;. Sampling continues
until either the total ¢; exceeds the criterion total k;,
or the total ¢, exceeds the criterion total t,.

At this point, the model makes a left or right deci-
sion accordingly, with a response time corresponding
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Figure 4: An accumulator sequential sampling process
account of decision-making on a single trial.

to the number of iterations. The balance-of-evidence
measure of confidence, ¢, is provided by the difference
between the totals, expressed as a proportion of the
total evidence accumulated, so that

C=|tl—t,«|/(tl+t,«).

A graphical representation of the model making a
decision on a single trial is shown in Figure 4. The
top panel shows the evidence distribution in memory
corresponding to “go right” advice. The operation of
the decision-making process is shown in the bottom
panel, with the two accumulators shown as evolving
solid lines, and the criterion threshold levels of evi-
dence as dotted lines. In this example, it takes a little
over 30 time units for a right decision to be made, with
relatively low confidence, because there is similar ev-
idence accumulated for both choices at the time the
decision is made.

Adaptation

Having made a decision, the model adapts to its envi-
ronment in two ways. First, if advice was given, the
feedback about the correctness of the advice is used to
update the relevant memory counts. In other words,
feedback is provided about whether or not the decision
was correct, allowing one of the g;, b;, g, and b, counts
to be updated, as appropriate.

Secondly, the decisional confidence is used to self-
regulate the criterion threshold levels. The difference
between the confidence with which the decision was
made, ¢ and a target level of confidence 7 is calculated
as h = ¢ — 7. If h is positive, it is added to an over-
confidence accumulator t,; for left decisions and t,,. for
right decisions. If h is negative, its absolute value is

added to an under-confidence accumulator t,; for left
decisions and t,,,. for right decisions.

If any of these over- or under-confidence accumula-
tors exceeds a critical amount v, the model undertakes
a self-regulating adjustment of a decision threshold.
This is done by increasing a decision thresholds mak-
ing under-confident decisions, or decreasing decision
thresholds leading to over-confident decisions, accord-
ing to a learning rate 0 < A < 1 and the difference be-
tween accumulated over- and under-confidence totals.
For example, if the under-confidence accumulator for
left decisions t,; exceeds the critical amount, then the
threshold for making left decisions, t; is increased by
A (tur — tor). The other possibilities for adjustment are
formulated similarly, and are detailed in Figure 3.

Model Evaluation

We evaluate the model in two stages. In the first, we
focus on descriptive adequacy, by considering the abil-
ity of the model to fit the data at an appropriate pa-
rameterization. Having demonstrated this, we then fo-
cus on the important issue of model complexity (e.g.,
Myung, Forster, & Browne, 2000; Roberts & Pashler,
2000; Pitt, Myung, & Zhang, 2002), and show that
the model is highly constrained in the behavior it can
produce at reasonable parameterizations.

Model Fitting

The model has four free parameters. These are: k, the
intial evidence level required to make a decision; 7, the
target level of confidence; y, the critical level of over-
or under-confidence needed for self-regulation, and A,
the learning rate.

It is possible to give some interpretation of the scale
for each of these parameters, and so constrain in mean-
ingful ways the values they can take. The target level
of confidence 7 is a value between 0 and 1, which ought
to be set at a value above (and likely well above) 0.5
in a two-choice task. The learning rate A also lies be-
tween 0 and 1, with the usual tradeoff between speed
and stability of adaptation, and so a range of values
are worth considering.

The level of evidence needed to make a decision x,
lies on a log-odds scale, and so can be treated in the
same way as Bayes Factors and other likelihood ratios,
which are commonly given interpreted on this scale.
Kass and Raftery (1995), for example, suggest that
a value of 2 provides evidence “not worth more than
a bare mention”, while a value of 6 is “positive” ev-
idence, and a value of 10 is “strong” evidence. The
critical level of over- or under-confidence ~y simply ac-
cumulates differences on the confidence scale, so that,
for example, a value of 2 would correspond to two com-
pletely miscalibrated decisions.

Using these interpretations as a guide, we exam-
ined the behavior of the model for every possible
combination of the following parameter values: xk =
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Figure 5: The best fit of the model (heavy lines), over
the set of parameterizations considered, to the empir-
ical data measuring mean confidence.

{2,6,10}, = = {0.6,0.7,0.8,0.9}, v = {2,6,10}, and
A = {0.1,0.3,0.5,0.7}. At each of these parameteri-
zations, we measured the fit of the advice acceptance
behavior and mean confidence of the model to the em-
pirical data.

Fit was measured on a log-likelihood scale using
Gaussian likelihood functions with the means and
standard errors shown in Figures 1 and 2, giving equal
weight to both the confidence and decision behavioral
measures. Because of the different scales on which em-
pirical confidence and the confidence of the model are
measured, the single scalar multiple that best mapped
the [0, 1] range of model confidence values onto the
[1,5] range for the empirical data was found in each
case. That is, the likelihood of a model prediction was
assessed once every value was multiplied by the same
number that aligned it as closely as possible with the
data.

Figure 5 shows the best-fitting behavior of the model
to the data, achieved using the parameterization x = 6,
7=0.7,y=2and A = 0.7000.

Figure 6 shows the advice acceptance behavior of the
model at the best-fitting parameterization. As with
the human data, the model nearly always accepts ad-
vice, and displays behavior consistent with guessing
when no advice is provided.

It is clear that the model is able to emulate closely
the empirical regularities in which we are interested.

Complexity Analysis

Of course, one possible explanation for the ability of
the model to fit the data is that it is a very compli-

[

i

o o
N 0
L«
L

o
)
T
.

o
S
T
I

Advice Acceptance
o
(4,

-
1
1
I
]

]
O
]

1
I
I

1]

o

1]
I

|

1

]

T

1
|l
n
1

o
w
T
.

o
)

r | —O— Advice J
-0 -No Advice
]

0.5 041t00.6 0.3t00.7 02t008 01t009 Otol
Uncertainty Condition

<3
i

o

Figure 6: The relationship between the model (heavy
lines) and the empirical data measuring advice accep-
tance behavior, at the best-fitting parameterisation.

cated model, potentially able to fit all sorts of qual-
itatively different patterns of behaviour by using dif-
ferent parameterizations. To consider this issue, we
examined the data patterns generated by all of the
3 X 4 x 3 x 4 = 144 parameterizations considered.

Figure 7 shows the full range of model behavior for
the mean confidence measure across conditions. It is
clear that, for advice trials, there are two possible pat-
terns of change in mean confidence. Both have the
slight inverted U-shape of the empirical data, but one
is more confident than the other, and shows less change
in confidence across conditions.

For no advice trials, there are three distinguishable
levels of confidence, one of which is too high to agree
with the empirical data. Within the lower bands, some
of the model behavior shows a linear decrease in mean
confidence across conditions that agrees with empirical
data, while others shows little or no change in mean
confidence.

Figure 7 shows the full range of model behavior for
the advice acceptance measure across conditions. It
can be seen that, essentially, the model is only able to
show one pattern of behavior, which involves accepting
advice with high probability, and guessing when no
advice is provided.

Taken together, Figures 7 and 8 make it clear that
the model is not complicated, in the formal sense ex-
plained by Myung, Balasubramanian, and Pitt (2000),
since it is able to index a only small number of distin-
guishable predictions about confidence and decision-
making behavior on the task.
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Figure 7: The confidence behaviour of the model, over
the set of parameterizations considered, for both ad-
vice and no advice trials.

Discussion

Our evaluation shows that the model can account for
the data, and does so without benefitting from exces-
sive complexity. What it does not offer is an explana-
tion of why the model behaves as it does, and hence
why people behave as they do in this task.

Clear insights along these lines are provided by con-
sidering which parameter values are responsible for
the observed variation in model behavior. If the ini-
tial level of evidence to make a decision, k is set to
the lowest value of 2, there is high and relatively con-
stant confidence for both advice trials and no-advice
trials (although, on average, no-advice trials are a lit-
tle lower). This corresponds to the upper bands for
both advice and no-advice trials in in Figure 7. Intu-
itively, this is because often only one or two samples
will be sufficient to trigger a decision, and no evidence
for the alternative choice will be accumulated, leading
to perfect confidence. If k is set to the more conser-
vative levels of 6 and 10, corresponding to requiring
positive or strong evidence before making a decision,
then the change in mean confidence across conditions
falls into the band that agrees with the empirical data,
and confidence for no-advice trials is low.

For the model to agree with the empirical data on
no-advice trials, it must show the further pattern of de-
clining as more “uncertain” advice is provided. This is
achieved by having either a low criterion + on the criti-
cal threshold for adapting to over- or under-confidence,
or a high learning rate A\. A decrease in confidence on
no-advice trials is evident when either of these param-
eter setting is used, and is most exagerrated when they
are both present.

Taken together, these conclusions mean that the
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Figure 8: The advice acceptance behaviour of the
model, over the set of parameterizations considered.

model captures the empirical data, as long as (a) a con-
servative initial decision threshold is used, and (b) the
learning rate and threshold for adaptivity allow large
changes in the self-regulation of the decision thresh-
old. These two conditions correspond neatly with the
two ways in which the model adapts: through external
adaptation to the environment based on feedback, and
through internal self-regulation based on confidence.
We discuss each in turn, providing an account of why
people behave as they do on this task.

External Adaptation

Because the evidence in memory almost always leads
the model to accept advice, what determines confi-
dence is the extent to which evidence for the alter-
native choice is sampled. For a trial where “go right”
advice is given, this is measured by the extent to which
the evidence distribution gives probability to nega-
tive log-odds. Equivalently, it depends on the extent
to which the probability distribution gives density to
probabilities less than 0.5.

There are two ways in which the evidence distribu-
tions can give density to values less than 0.5. One way
is to have a mean near 0.5, and some variance. This
is what happens for the experimental conditions where
advice is always offered, and so the counts of correct
and incorrect advice are relatively close. The other
way is to have a large variance, whatever the mean.
This is what happens for the experimental conditions
where little advice is given, and so the counts of correct
and incorrect advice are small.

This state of affairs is represented graphically in Fig-
ure 9, which shows the expected probability distribu-
tions for the “0.5”, “0.3 to 0.7” and “0.1 to 0.9” ex-
perimental conditions at trial 30 out of 50, under the
best-fitting parameterization. The “0.3 to 0.7” distri-
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Figure 9: The mean evidence distributions after 30
trials for three of the experimental conditions.

bution gives the least probability to values less than
0.5 because it is centered at a value far away (thanks
to accurate advice) and has relatively small variance
(thanks to plentiful advice).

Intuitively, when the advice is poor, the model con-
siders the alternative, and loses confidence. When lit-
tle advice is given, the model is unsure, and loses con-
fidence. When a reasonable amount of reasonably ac-
curate advice is given, the model is most confident.
This adaptation to the accuracy and volume of advice
is responsible for the inverted U-shape in confidence
on advice trials. To be captured, the only requirement
is that enough evidence be sampled for the effect to
be clear. Hence it is necessary that the initial decision
threshold x not be too lenient.

Internal Adaptation

Figure 10 shows the change in the mean final deci-
sion thresholds (i.e., the mean of both ¢ and ¢,) for
each condition, at the best-fitting parameterization.
It is clear that, as conditions include more no-advice
trials, and more guessing decisions are consequently
made with low confidence, the thresholds are adapted
to larger values. This self-regulation is responsible for
the decline in confidence for no-advice trials. As the
criterion thresholds become larger, the many samples
taken from the uniform distribution lead to consistent
very low balance-of-evidence confidence values. To be
evident, the only requirement is that the model self-
regulates its decision threshold often enough, and by
a large enough amount. Hence it is necessary that cri-
terion y for adapting to over- or under-confidence not
be too lenient, and that the learning rate A not be too
low.
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Figure 10: The change in the mean final decision
thresholds across the six experimental conditions.

Conclusion

The accumulator model provides a simple, inter-
pretable and elegant account of the four interesting em-
pirical regularities in this task. Future work is intended
to test whether the predictions the model makes for
different environments—especially those in which ac-
curacy and availability of advice are not perfectly
related—are observed in human decision-making.
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